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The subject of this article is the reconstruction of quantum mechanics on the 
basis of a formal language of quantum mechanical propositions. During recent 
years, research in the foundations of the language of science has given rise to a 
dialogic semantics that is adequate in the case of a formal language for quantum 
physics. The system of sequential logic which is comprised by the language is 
more general than classical logic; it includes the classical system as a special 
case. Although the system of sequential logic can be founded without reference 
to the empirical content of quantum physical propositions, it establishes an 
essential part of the structure of the mathematical formalism used in quantum 
mechanics. It is the purpose of this paper to demonstrate the connection 
between the formal language of quantum physics and its representation by 
mathematical structures in a self-contained way. 

I N T R O D U C T I O N  

This  pape r  is conce rned  with  the  logical  s t ruc ture  of p ropos i t ions  in 
the ob jec t  l anguage  of q u a n t u m  physics.  Its pu rpose  is to show how this 
s t ructure  can be f o u n d e d  by  means  of a p roof  theoret ic  semant ics  of the 
l anguage  of q u a n t u m  physics.  

The  a p p r o a c h  cons ide red  here  has  its roots  in an  ar t ic le  by  Birkhoff  
a n d  v. N e u m a n n  (1936) en t i t l ed  " T h e  Logic  of  Q u a n t u m  Mechan ics . "  
Since then  m a n y  au thors  have  inves t iga ted  possibi l i t ies  of  ( re )cons t ruc t ing  
q u a n t u m  theory  on  the bas ic  concep t  of a q u a n t u m  mechan ica l  p ropos i -  
t ion a n d  by  means  of the pa r t i cu l a r  proper t ies  of  these propos i t ions .  A 
mos t  e l abo ra t e  ax iomat i c  a p p r o a c h  of this k ind  is p resen ted  b y  Jauch  
(1968) a n d  Pi ron  (1976). I t  is a s sumed  tha t  q u a n t u m  mechan ica l  p ropos i -  
t ions fo rm a comple t e  o r t h o c o m p l e m e n t e d  qua s imodu la r  la t t ice  which,  in 
add i t ion ,  satisfies the  a tomic i ty  and  cover ing  proper ty .  This  s tructure,  a lso 
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called a propositional system, is realized by the closed subspaces of a 
Hilbert space or by the projection operators defined on a Hilbert space. 
The propositional system has many similarities with the system of classical 
propositional logic which can be represented by a Boolean lattice. 

The foundation of quantum physics on the particular properties of 
quantum mechanical propositions has led to the further question, much 
discussed, whether at least a part of the quantum mechanical propositional 
system can be understood as a logical system, often called quantum logic. 
This is precisely the subject of a !og]cal foundation of quantum mechanics 
considered here. 

An extension of the system of intuitionistic and classical logic to the 
system of quantum logic from the point of view of an operational founda- 
tion of logic is investigated by Mittelstaedt (1978) and his collaborators. By 
means of idealizing assumptions concerning proofs of elementary proposi- 
tions and by means of dialogic proof procedures for logically connected 
propositions a formal language is established that is adequately represented 
by the system of quantum logic. This system forms a free orthocomple- 
mented quasimodular lattice. In this way an essential part of the quantum 
mechanical propositional system can indeed be understood as a logical 
system. 

The language of quantum physics requires still another kind of 
proposition, namely, propositions that are not logically composed of ele- 
mentary propositions but are sequentially composed of elementary proposi- 
tions. Such sequential propositions concern the evolution of a quantum 
mechanical system due to the Hamiltonian of the system as well as due to 
a sequence of measuring processes with respect to the system. It is the 
purpose of this paper to extend the concept of a quantum mechanical 
proposition to sequential propositions and to extend the system of quan- 
tum logic to the system of sequential quantum logic. 

In Section 1 of the paper it is shown how sequential propositions can 
be defined systematically by means of dialogic proof procedures. In this 
way a unitary proof theoretic semantics is established for logically and 
sequentially connected propositions. In the framework of this approach 
one can assign a fundamental role to the sequential connectives. One 
reobtains logically connected quantum mechanical propositions on the 
basis of sequential propositions by means of an additional fundamental 
proposition which is called a commensurability proposition since it guaran- 
tees the commensurability of the subpropositions. 

In Section 2 of the paper the material logic and the formal logic of 
quantum mechanical propositions are considered. The material logic con- 
sists of an algorithm which allows one to deduce materially true compound 
propositions if a sequence of proofs and disproofs of elementary and 
commensurability propositions, which are also called materialpropositions, 
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is initially given. It is a logical system which still includes a "semantical" 
rule due to the initial proofs and disproofs of material propositions. On the 
other hand, the formal logic does not depend on the specific interpretation 
and, hence, on the contingent proofs and disproofs of material proposi- 
tions. The calculus of formal logic establishes formally true propositions. It 
is only mentioned here that the calculi of material logic and of formal logic 
are complete and sound with respect to the proof theoretic semantics of the 
language of quantum mechanical propositions. 

In Section 3 of the paper we finally proceed to algebraic representa- 
tions of the formal logic and to realizations within the Hilbert space 
formalism of quantum mechanics. An algebraic representation of the 
logical system is obtained by constructing the Lindenbaum-Tarski algebra 
of the sequential quantum logic. This Lindenbaum-Tarski algebra 
possesses the well-known structure of a Baer* semigroup (Foulis, 1960). 
Particular subsystems of sequential quantum logic, which have their own 
importance, are represented by other well-known structures. The restric- 
tion of the system to logically connected propositions leads to an ortho- 
complemented quasimodular lattice structure [see Mittelstaedt (1978), p. 
29]. Furthermore, a restriction of the system to particular logically con- 
nected propositions, which play a distinguished role in the framework of 
sequential quantum logic, leads to algebraic structures investigated by 
Krrger (1973, 1974) and Dishkant (1977). All these algebraic approaches 
to quantum mechanics can be distinguished systematically within the 
framework of the sequential quantum logic. Concerning a reconstruction 
of quantum physics, it is interesting to consider realizations of the ex- 
tended quantum mechanical propositional system within the common 
Hilbert space formalism. Whereas the material and logically connected 
propositions are realized by the projection operators on a Hilbert space, it 
is shown that sequentially connected propositions are realized by products 
and particular sums of projection operators. 

The extension of the proof theoretic semantics to sequential proposi- 
tions is also desirable with regard to probability statements of the language 
of quantum mechanics. Most probability statements concern sequential 
probabilities which, in the framework of our approach, are probabilities of 
sequential propositions to be true. Probabilities of sequential propositions 
in the language of quantum physics have been considered in a brief report 
(Stachow, 1979b) and will be investigated in detail in a forthcoming article. 

1. THE LANGUAGE OF QUANTUM PHYSICS 

Before we consider a possible semantics of the language of quantum 
physics which appraises a logical system for quantum mechanical proposi- 
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tions to be adequate and understood, it should be made precise what we 
mean by a logical foundation of a physical theory. 

1.1. The Logical Foundation of a Physical Theory 

The subject of a logical foundation of a physical theory is the 
reconstruction of the theory by means of a logical system. We make use 
here of the standard terminology of logic texts [e.g., see van Fraassen 
(1971)], some basic notions of which may be defined in the following way. 

(1.1) Definition. A syntactic system (Syn) is a pair ( V , E ) ,  where 
(a) V is a set, at most denumerable (the vocabulary or the set of 

words); 
(b) E is a set (the set of expressions that are sequences of words and 

specified by a grammar; subsets of E are the sets of nouns, 
sentences, and functors). 

An example is the syntactic system of the classical propositional logic: 

(1.2) Definition. A C-propositional syntactic system (CPS) is a pair 
( (S , ,  C ), S ), where 

(a) S a is the set of atomic sentences; 
(b) C is the set { A,  V,  ---~, --1,), ( } of logical signs [the logical connec- 

tives A, V, ~ ,  --1, and parentheses ), (]; 
(c) S is the set of sentences, recursively defined by (i) if 'a E S a then 

a ~ S ;  (ii) if A , B  ~ S  then ( A A B ) , ( A V B ) , ( A - - - ~ B ) , ( - n A ) ~ S .  

Also the important notion of a logical system comprises a purely formal 
concept devoid of any interpretation of the system. 

(1.3) Definition. A logical system (LS) is a pair (Syn, F), where 
(a) Syn is a syntactic system; 
(b) F is a relation from sets of sentences of Syn to sentences of Syn 

clef 
(XkA ;.q (X,A) ~ k). 

We define Th as the set (A E S :  OkA} (the set of theorems). The set of 
theorems of a logical system can be specified in a constructive manner by 
means of a logical calculus. 

(1.4) Definition. A logical calculus (LC) is a triple (Syn, F,R ),  where 
(a) Syn is a syntactic system; 
(b) F is a relation C_P(S)•  S, where •(S)  is the power set of S 

(XFA is called a figure); 
(c) R is a set consisting of the beginnings (or axioms) of the calculus, 

denoted by ~ X F A ,  and also of the constitutive rules of the 
calculus, denoted by XIFA 1 ....... X ,  F A , ~ X F A .  
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Now we can define the set (F) of deducible figures of LC recursively 
by: (i) if ~ X F A E R  then X k A E F ;  (ii) if XlbA 1 . . . . .  X, FAn~F and 
X1FA 1 . . . . . . .  X n F A ~ X F A  @R, then X F A ~ F .  The set of theorems of a 
logical system is specified by a logical calculus iff ~bA ETh,,--.aOFA EF .  

A logical system receives its appraisal only in connection with a 
language which distinguishes the logical system as an adequate presenta- 
tion of the language. 

(1.5) Definition. A formal language (L) is a pair {Syn, VL}, where 
(a) Syn is a syntactic system; 
(b) VL is a nonempty set of functions v (the set of admissible 

valuations of Syn) which assign T (true) to some sentences of S, 
a n d / o r  F (false) to some sentences of S. 

The specification of the admissible valuations of a formal language L 
usually is called the formal semantics of L. A well-known example is a 
bivalent semantics which establishes a bivalent propositional language. 

(1.6) Definition. A bivalent propositional language is a pair 
(CPS, BVL}, where 

(a) CPS is the C-propositional syntactic system; 
(b) BVL is the set of functions v (bivaluations), such that for all 

sentences A, B ~ CPS 
(i) v(A) E {T,F}; 
(ii) v ( A A B ) = T  iff v(A)= v ( B ) = T ;  
(iii) v( -1 A) = T i f f  v(A) = F. 

Important semantic concepts are those of satisfaction and validity. A 
sentence A of L is said to be satisfied by an admissible valuation v if and 
only if v (A)=T.  A is said to be satisfiable if and only if there exists an 
admissible valuation v such that v(A)=T. A sentence A of L is said to be 
valid (IFA) if and only if v ( A ) = T  for all admissible valuations v of L. The 
adequateness of a logical system with respect to a language can be made 
precise now by the correspondence: I~-A in L~-a f0FA in LS (" .~"  yields the 
completeness, "e-." yields the soundness of LS with respect to L). 

These concepts of logic and formal semantics are important for the 
consideration of the language of physics. They are used here to establish 
an adequate logical system for the language of quantum mechanics. 

A physical theory, like quantum mechanics, uses mathematical struc- 
tures which are more concrete and more common than the abstract 
structure of the logical system of a physical language. However, it is the 
purpose of this paper to show that there is a relation between these 
structures in the sense that the structure of the logical system is realized by 
(at least a part of) the mathematical formalism of the theory. In this way, 
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which we call a logical foundation of a physical theory, one can perhaps 
better understand why a particular physical theory is so effective in 
describing actual operations. 

1.2. The Syntax of the Language 

The formal language of quantum physics comprises a syntactic system 
and a set of admissible valuations for its sentences. In order to establish 
this formal language as an adequate language for quantum physics, the 
elements of the syntax should be determined to be symbols for meaningful 
physical and linguistic concepts. We call such an interpretation of the 
syntax of L also an underlying semantics. The underlying semantics then 
leads to a specification of the admissible valuations of the language. In our 
approach, the syntax of the language of quantum physics is specifically 
motivated by and adapted to the pragmatic operations of a science. This 
approach to a formal language has been carried out and will be extended 
here to a richer syntax in a systematic way. 

1.2.1. Elementary Propositions. Elementary propositions belong to the 
set of atomic sentences of the syntax of the language. They are predictions 
of particular properties of a quantum mechanical system. We assume that 
elementary propositions can be proved or disproved by means of opera- 
tional tests. Let us consider the following example. An electron ($)  is given 
which moves in the + z direction of a coordinate system. An elementary 
proposition is "The electron has 'spin-up' in the direction a in the x - y  
plane at the time t," in symbols "a(S ,t)," where t is the future point of 
time with respect to which the property is predicted. An operational test of 
this proposition could be a Stern-Gerlach experiment, which is oriented in 
the direction a, together with a photographic plate. The mark, which the 
electron leaves on the plate, indicates the deviation of the electron in 
the magnetic field and, thus, proves or disproves the proposition under 
consideration. Of course, this description of an operational test is a rather 
simplified and imprecise description. A careful and detailed analysis of a 
physical operation, provided with a mathematical model, is given by 
Randall and Foulis 0976, 1979), Ludwig (1977). However, we accept the 
view that a precise account of what a physical operation means can be 
given only in the context of an established physical theory, or in the 
context of an already established language of physics. Hence we are led to 
the following commitment. The operational proof procedures for elemen- 
tary propositions, which belong to the underlying semantics of the lan- 
guage to be established, must be described precisely and completely by the 
language in the final stage when the language is established. This demand 



Logical Foundation of Quantum Mechnics 257 

with respect to an operational approach to a physical theory is called 
semantical consistency (v. Weizs/icker) or self-consistency (Mittelstaedt). We 
cannot here investigate the difficult problem of the consistency of the 
concept of elementary propositions with respect to an underlying seman- 
tics. Since we are, in the first place, interested in a formal logical system 
which is adequate to the language, we assume that elementary propositions 
are described by the Hilbert space formalism consistently as it is explained 
in Section 1.3.1. We call this specific example of an underlying semantics 
for elementary propositions a Hilbert space semantics. 

Elementary propositions are denoted by a, b',..., the at most denumer- 
able set of elementary propositions is denoted by S e. The underlying 
semantics precisely formulates the proof conditions for elementary prop- 
ositions. In this case we say that elementary propositions are proof definite. 
If, in addition, it is defined when an elementary proposition a is disproved, 
we say that a is disproof definite. If, in the sense of semantical consistency, 
there exists a proof procedure for a, such that, after performing this 
procedure, a is either proved or disproved, we say that a is value definite. 
If, furthermore, this proof procedure, when repeated immediately, always 
leads to the same result, we say that a is idempotent. In the following we 
assume that all elementary propositions are idempotent. This assumption is 
consistent with the Hilbert space semantics considered in Section 1.3.1. 

It is useful to introduce two additional propositions V (the true 
proposition) and A (the false proposition) which are defined by the condi- 
tions that V is valid and A is not satisfiable (see Section 1.1). 

The set of atomic sentences of the language of quantum physics is 
then given by S a = S e U {V, A}. 

1.2.2. Compound Propositions. An essential concept that is considered 
in this paper is that of a compound proposition. Since we are in the 
possession of a proof theory for elementary propositions, the question 
arises how sentences that are composed of elementary propositions can 
meaningfully be defined by an underlying semantics. Usually, a proposi- 
tional syntax includes the conjunction A, the disjunction V ,  the material 
implication -->, and the negation --1 (which are in a certain sense understood 
as the colloquial and, or, if-then, and not, respectively) as logical connec- 
tives. The interpretations of these logical connectives in a language of 
quantum physics has led to malay anomalies with respect to the concepts of 
classical propositional logic and semantics. In the framework of an under- 
lying operational semantics, logically connected propositions should permit 
an operational proof procedure which recurs to specific proofs and dis- 
proofs of the elementary subpropositions. Intuitively, one would stipulate 
for the proof condition of a sentence a A b  that the elementary proposition 
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a and the elementary proposition b must be proved, where the "and"  in 
this sentence is meant in a pragmatic sense. As an example, let us consider 
two elementary propositions of the sort a($ ,t), b($ ,t) as defined above 
with a~b.  In any operational procedure that includes tests of a and b, 
these tests are performed in a sequence. According to our example, where 
elementary propositions are associated (in an idealizing way) with points of 
time, the tests of a and b refer to two different time values of a and b, for 
instance a ( $ , t  0 and b(S,t2) with t l<t 2. Now, the pair (a,b) has a 
particular property which we call incommensurability. This property means 
that there exists no measurement for a which, after a sequence of measure- 
ments of a and then b, reproduces the result with certainty; analogously 
for b. For  a proof of the sentence aAb,  a sequence of measurements of a 
and b should not be sufficient. Only an additional proof of the commensur- 
ability of the pair (a,b) should establish a proof of aAb.  In our example, 
only the commensurability would justify referring a and b to the same 
point of time and, thus, using a sequence of measurements of a and b in 
order to prove the sentence a(S, t )Ab(S, t ) .  However, because of the 
incommensurability of a and b, the proposition a(~ , t )A b (S  ,t) can never 
be proved, even if a ( $ , t )  and b($, t+At)  can be proved in an immediate 
succession with At---~0 [see Mittelstaedt (1978), Chap. 3]. In this way, it can 
easily be seen that an underlying operational semantics for logically 
connected propositions does not specify a bivalent propositional language 
(1.6) of quantum physics. As a consequence, various attempts have been 
made to establish many-valued logics for quantum mechanics. We do not 
consider them here, but rather offer another approach which uses the two 
values true (T) and false (F) only. 

Our approach consists in a systematic construction of the language of 
quantum physics as an argumentation procedure with respect to stated 
sentences. This means that (for our purposes) we restrict the set S of 
sentences to those sentences which, in the actual language, are interpreted 
as statements that are open to doubts and, upon a doubt, must be justified 
in some way. Therefore we use the term "proposition" instead of 
"sentence." The process of argumentation is formulated as a language 
game. Particular possibilities of argumentation, represented by means of 
the argument rules of a dialog game, define the connective structure of 
compound propositions. Since the dialog game provides the compound 
propositions with a proof procedure, compound propositions are said to be 
dialog definite. There are, in addition to the logical connectives A,  V,  ---~, 
m, three kinds of 2-place sequential connectives, the sequential conjunction 
["], the sequential disjunction II ,  and the sequential material implication 4 
(in a certain sense specifying the colloquial and then, or then, and if 
first-then, respectively). Each sequential connective represents particular 
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possibilities of the succession of two arguments within the language game. 
An example of a sequentially connected proposition a[-]b is the proposi- 
tion a(S , t )~b($ , t+At)  with At>0 ,  which comprises a sequence of 
measurements of a and b at the time t and at the time t +At,  respectively, 
as was discussed above. In order to prove logically connected propositions 
within a finite game, we need commensurability propositions k(a,b) which 
state the commensurability of the pair of propositions (a, b). This is made 
precise by the following definition. 

(1.7) Definition. The commensurability proposition k(a,b) states that for 
all sequences of proofs of a and b it is satisfied that the results of the 
proofs of a are all the same, and the results of the proofs of b are all the 
same. 

The commensurability and incommensurability, respectively, of a pair 
(a, b) are considered here to be properties of a quantum mechanical system 
which can be proved by experimental tests. Since they are propositions 
about measurable properties of a system, the commensurability proposi- 
tions have the same status as elementary propositions. Therefore both 
kinds of propositions are called material propositions. We assume that also 
for commensurability propositions the Hilbert space formalism of quan- 
tum mechanics provides an underlying semantics which formulates the 
proof conditions of these propositions in a precise way, as is worked out in 
Section 1.3.1. 

1.2.3. The Syntax of the Formal Language. The above considerations 
suggest the following syntax of the formal language of quantum physics. 

(1.8) Definition. A Q-propositional syntactic system (QPS) is a pair 
((Se, C~,S~, where 

(a) S a is the set consisting of the elementary propositions, denoted by 
a, b . . . . .  the true proposition V and the false proposition A; 

(b) C is the set ( A , V , ~ , - ~ , F q ,  U , 4 , k (  , ) , ) , ( ) o f  the logical and 
sequential connectives, the commensurability sign k(,), and the 
parentheses ), (; 

(c) S is the set of sequential propositions (S propositions), denoted by 
C, ~ ,  ~ , . . . ,  which includes the set L of logical propositions (L 
propositions), denoted by A, B . . . . .  S is recursively defined by 
(i) if a c Se then a E L; 
(ii) if A,B EL  then (AAB),(AMB),(A---~B),(-~A),k(A,B)EL; 
(iii) if A E L then A E S; 
(iv) if d~,~ E S  then ( d ~ [ - q ~ ) , ( C U ~ ) , ( d ~ 4 ~ ) ,  ~ d ~ S .  



260 Staehow 

The above syntactic system contains a comprehensive set of connec- 
tives. Not all connectives are independent if the value definiteness of 
material propositions is assumed. As is the case for the C-propositional 
syntactic system (1.2), an arbitrary pair of the 2-place logical connectives 
/k, V,---> can be eliminated. Moreover, in QPS, all 2-place logical connec- 
tives and an arbitrary pair of sequential connectives can be eliminated. 
The connectives R , -~  would be a minimal basis of connectives, for 
instance. 

1.3. Proof Theoretic Semantics of the Language 

We emphasize that the term "proof theoretic," as it is used here, 
characterizes a particular underlying semantics of the language which 
interprets the sentences by means of their proof possibilities. These proof 
possibilities are formulated by a theory (for instance the HAlbert space 
theory for material propositions, the theory of dialog games for compound 
propositions). It must be distinguished from the "proof-theoretic" methods 
of the metalogic which deal with the specific setup of axioms and rules for 
a formulation of a logical system. 

1.3.1. Hiibert Space Semantics of Material Propositions. As an exam- 
ple of a semantics of material propositions we refer to the Hilbert space 
formalism of quantum mechanics. A physical system $ is represented by a 
Hilbert space 0~(S) (in general by a family of Hilbert spaces ~C~($), but 
we restrict our consideration here to the simple case of one Hilbert space). 
Each property d of the system is associated with a closed subspace M a of 
~ ( S ) .  Depending on the particular preparation, the system is char- 
acterized by a particular state. A system can always be prepared in a pure 
state which corresponds to a vector IqP~ in the Hilbert space. 

If a system is given in a state Icp~, a measurement of a property ~ is 
represented by a mapping which projects the vector orthogonally into 
the subspace M a. This mapping defines the projection operator Pa on ~C 
with the range M a. Hence, each property d of the system can equally be 
associated with the projection operator Pa" 

In case Pa satisfies the relation Pa]q~ =lq~, which is equivalent to 
I cp~ ~ M a, the property c~ will certainly be proved by a measurement. In 
case Palcp~ =0  holds, which is equivalent to ~ M ~  where M ~  is the 
completely orthogonal subspace with respect to Mo, the property d will 
certainly by disproved by a measurement. In these two cases, the Hilbert 
space formalism permits inferring the truth and falsity of an elementary 
proposition (which is a prediction of a property of the system) already 
from the preparation of the system. 
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However this is not possible for all elementary propositions. If [r 
M~ and [r M ~ ,  the theory of measurement does not specify the system 
to be in a pure state after the interaction with a measuring apparatus, but 
in a mixed state [e.g., see Mittelstaedt (1976) Chap. III]. This mixed state 
comprises the two possibilities that, after "reading the scale," the system is 
in the state [~), which is the orthogonal projection of ]qv) into M~, or in 
the state IX), which is the orthogonal projection of lep) into M ~ .  

The Hilbert space formalism leads to the following proof and disproof 
conditions for elementary propositions. Let us assume that a system g is 
prepared in the state ]cp), denoted by g (qo). An elementary proposition 
states a certain property fi of the system after its preparation, denoted by 
a(rp). If, after the measuring process with respect to the property fi (which 
includes reading the scale), the system is in the state [q@, we have the 
following. 

(1.9) Definition. 

(a) v(a(~o))= Tz--aa(qo)isproved ~~eal~')--I~'); 
(b) v(a(~))= F~--~a(~0) is disproved f f~ P~I~') =0. 

The Hilbert  space semantics is extended to commensurability proposi- 
tions. Each commensurability proposition k(a,b) is associated with the 
closed subspace (M, ('1 Mb ) kJ ( M a I" l  M ~  ) t2 ( M ~  V1M b) U ( M ~  O M ~ L ) = Mk(a, ~,), 
where the operation N denotes  the intersection of subspaces and the 
operation U denotes the span of subspaces. The correspondence of k(a,b) 
to Mk(a,b) may be motivated at this stage by the relation 

(1.10) [eP)eMk(a,b ) ~'--a [ Pa, Pb] _ lop) = 0  

which can easily be proved in the Hilbert space formalism. The projection 
operator Pk(a,b) onto Mk(a,b) is given ~ by 

P,~(a,b) : = (s)lim (Pa'Pb)" + (s)lim (Pa" ( 1  - Pb))n + (s)lim ((1 -- Pa).Pb)" 
n ----)" O0 n ---> o o  B --.) O0 

+ (s)lim ((1 - Pa)" (1 - Pb)) ~ 
n----) O0 

such that 

(1.11) 

(1.12) 3_ P~(a,b)[~> = 0  ~ I~ )  E g;,(a,b) 

IThe symbol (s)lim denotes the strong convergence of a sequence of operators. 
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Since we assume that k(a, b) can be proven by an experimental test, the 
above considerations of the theory of measurement can immediately be 
applied to commensurability propositions also: 

(1.13) Definition. 
de f .  t 

(a) v(k(a, b)(cp)) = Tz--~ k(a, b)(cp) is proved k'-"aPk(a,b) I fp > = Ir ; 

(b) v(k(a, b)(cp)) = Fz'-~k(a, b)(cp) is disproved z-~ Pk(a,b)l cp') = 0. 

The various connections between material propositions and closed 
subspaces of a Hilbert space, operational proofs of material propositions 
by means of measurements and the theory of quantum mechanical 
measurements are supposed to satisfy the principle of semantical con- 
sistency, and are summarized in Diagram 1. 

Hilbert space 
formalism 

Closed subspaces 
of % 

t 

Material ~ [ 
propositions 

Theory of 
measurements 

Operational 
proofs 

Diagram I 

t Hilbert space semantics 
for material propositions 

1.3.2. Dialogic Semantics for Compound Propositions. The concepts of 
logical and sequential connectives of the language of quantum physics are 
meaningfully defined by the possibilities of argumentation within quantum 
mechanical language games. Since the theory of dialog games also de- 
termines the proof conditions for logically and sequentially connected 
propositions, it provides the compound quantum mechanical propositions 
with an underlying semantics. 

It should be noted that the language game for quantum mechanical 
propositions has a structure that can be founded without reference to the 
particular empirical content of quantum mechanical propositions 
(Stachow, 1976, 1979a). In these papers it is argued that a language for 
science has a certain discoverable skeleton that can adequately be recon- 
structed by means of a language game for science. This skeleton, as a 
universal structure of a scientific language, is a linguistic precondition of 
any scientific conception of reality. In this sense it may be considered as a 



Logical Foundation of Quantum Mechanics 263 

cognition that is a priori valid. It is a remarkable feature of the formal 
language of quantum physics that it is entirely established by this language 
game. 

In the following, the language game for quantum mechanical proposi- 
tions is presented in a systematic manner without considering questions of 
its justification (which can be found in the above-cited articles). The 
language game can be formulated as a dialog game [or a two-person 
zero-sum game in the terminology of game theory, e.g., Berge (1957)]. The 
rules of the dialog game are divided into two classes: the frame rules, 
which constitute the concept of a dialog, and the argument rules, which 
specify the possibilities of argumentation within the framework of a dialog. 

The frame rules of the dialog game are as follows: 
FI:  At the beginning of the dialog, the proponent (P)  asserts the 

initial argument. In this way, the initial position of the dialog 
game is established. 

F2: After the assertion of the initial argument, an opponent (O) 
may attack this argument. Thereupon, the proponent is obliged 
to defend the initial argument against the attack. 

F3: The dialog consists in a sequence of arguments which are 
assertions, attacks, and defences of the two participants. 

F4: If one of the two participants cannot continue to put forth an 
argument, he loses the dialog. In this case the other one wins, 
and the final position of the dialog is established. 

(1.14) Definition. Arguments that may be used in a dialog are 
(a) S propositions (1.8); the initial argument of a dialog always is a 

proposition; 
(b) the challenges 1?,~, ? to state a subproposition of a compound 

proposition; they are always used as attacks; 
(c) the challenges a!,k(A,B)? to prove elementary and commensura- 

bility propositions, respectively; they are always used as at t,3cks; 
(d) theproof arguments a?,k(A,B)!, symbolizing a proof of a and of 

k(A,B), respectively; they are always used as defences. 

The argument rules of the dialog game are 
A'I:  (a) If, in a dialog about a compound proposition, a subproposi- 

tion is asserted, the assertion is taken to be an initial argument in a new 
dialog, a subdialog, about the subproposition. 

(b) The possibilities of argumentation with respect to logically con- 
nected propositions are 

(i) If A A B  is asserted, it may be attacked by a challenge E( l? ,27) .  
Upon the attack 1?, the obligation to defend consists in the winning of a 
subdialog about A ; upon the attack 2?, the obligation to defend consists in 
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the winning of a subdialog about B. Upon a defence, the proposition A A B 
may be attacked again. 

(ii) If A V B  is asserted, it may be attacked by the challenge ?. Upon 
the attack ?, the obligation to defend consists in the winning of a subdialog 
with respect to one of the subpropositions E{A,B).  If an attempt to 
defend fails by the loss of the subdialog, the participant may try again to 
defend by winning a subdialog. 

(iii) If A---~B is asserted, it may be attacked by the assertion of the 
subproposition A. Upon the attack, the obligation to defend consists in the 
assertion of the subproposition B, but is postponed according to (a) until 
the subdialog about A is won by the participant who attacked by A. In 
case the subdialog about A is lost, there is no longer an obligation to 
defend. Upon a defence, the proposition A--,B may be attacked again. 

(iv) If -~A is asserted, it may be attacked by the assertion of the 
subproposition A. Upon the attack, no defence is possible. 

The possibilities of attack and defence are summarized in Table I. 
(c) The possibilities of argumentation with respect to sequentially 

connected propositions are given by Table II, which is self-explanatory. 
Whereas with respect to logically connected propositions, the dialog is 
ruled by possible successions of attacks and of defences, the successions of 

TABLE I 

Logical Logically connected Possibilities Possibilities 
connective proposition of attack of defence 

conjunction A A B 1 ? A 
2? B 

disjunction A V B ? A 
B 

material A --~ B A B 
implication 

negation m A A 

TABLE II  

Sequential Sequentially connected 
connective proposition Attacks De fences 

sequential ~ r - ] ~  1. 1? 2. t~ 
conjunction 3. 2? 4. 

sequential ~ I I  o~ 1. ? 2. 
disjunction 3. 

sequential 
material 6g 4 o~ 1. t~ 2. 
implication 

negation ~ ~ 1. 
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attacks and of defences are uniquely determined in dialogs with respect to 
sequentially connected propositions. The succession of the arguments is 
indicated by numbers in the table. 

Am2: If an elementary proposition a is asserted in a dialog, it may be 
attacked by the argument a?. The obligation to defend consists in a proof 
of a which is performed outside of the dialog by means of a measuring 
process. If a proof of a is established, this is indicated by the defence 
argument a! in the dialog. 

The truth and falsity of a compound proposition should not depend 
on the win and loss, respectively, of the individual run of a dialog. It might 
be the case that a particular choice among the possibilities of argumenta- 
tion with respect to a logically connected proposition leads to winning the 
dialog, whereas another choice would not. In order to establish the truth 
and falsity of a logically connected proposition, the contingency of the win 
and loss of a dialog due to the particular choice of the arguments should 
be excluded. This can be done by means of commensurability propositions 
as is indicated below. It is useful to establish a dialog game in which the 
win by the proponent establishes the truth, and the loss by the proponent 
establishes the falsity of the initial argument. Such a dialog game is called 
the material dialog game. It is obtained by replacing the argument rule A'I 
by the new argument rule A1 which differs from A'I in (b) only, and by 
adding the additional argument rule Am3: 

AI: (b) A participant wins the dialog about a logically connected 
proposition, irrespective of the particular choices among the possibilities of 
argumentation (we say he has a strategy of success), if and only if he wins 
the dialog which makes use of the attacks and defences given by Table III. 

Am3: If a commensurability proposition k(A,B)  is asserted in a 
dialog, it may be attacked by the argument k(A,B)?. The obligation to 
defend consists in a proof of k(A ,B)  which is performed outside of the 

TABLE lII 

Logical Logically connected 

connective proposition Attacks Defences 

1. 1? 2. A 
conjunction A / k B  3. 2! 4. B 

5. k(A,B)? 6. k(A,a) 

1. T 2. A 
disjunction A V B  3. B 

4. ~k (A ,B )  

material 1. A 2. B 
implication A ----~B 3. k(A, B)? 4. k(A, B) 

negation --hA 1. A 



dialog by means of a measuring process. If a proof of k(A,B) is estab- 
lished, this is indicated by the defence argument k(A, B)! in the dialog. 

The material dialog game (Din) is defined by the rules F1-F4 and 
A1-Am3. A detailed discussion of this dialog game can be found in the 
book by Mittelstaedt (1978), Chap. 3. If the proponent wins the material 
dialog about the proposition ~,  this is denoted by ~-D,, d~. 

The proof and disproof conditions for compound propositions can 
now be specified by the following definition. 

(1.15) Definition. 
def 

(a) ~ is materially true ~ ~ is proved ~ F-D, ~ ; 

(b) d~ is materially false ~--.~ is disproved ~-J ~-Dm -76g. 

It is clear from the material dialog game that a proof or disproof of a 
compound proposition is partly a result of the rules or argumentation and 
partly a result of measuring processes with respect to a quantum mechani- 
cal system under consideration. Under the dialog semantics we understand 
the pure structure of argumentation as it is stipulated by the structural 
rules F1-F4 and A1 of the material dialog game. The dialogic semantics, 
together with the Hilbert space semantics, establishes a proof theory for 
compound quantum mechanical propositions in a way that is illustrated by 
means of Diagram 2. 

Proofs of commensurability [ Proofs of logical 
propositions ~ [  propositions 

/ 

I Proofs of elementary ~ ~ t i a l  
propositions ~ ~ prop_ositions 

Hilbert space Dialogic 
semantics semantics 

D ~ m a  2 

1.33. Admissible Valuations of the Language. The proof-theoretic se- 
mantics is now used for specifying the set of admissible valuations of the 
language of quantum physics. As we shall show in the following, the 
dialogic proof procedure provides quantum mechanical propositions with a 
very natural valuation. 
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Each dialog consists in a succession of arguments which is determined 
by the dialog rules up to the tests of material propositions. Because of the 
contingent proof results of material propositions, there are different possi- 
bilities of the continuation of the dialog. These possibilities may be 
represented by a game tree. As an example let us consider the game tree 
with respect to the proposition aAb: 

aAb 
I 

a 

/ \  
--ha! a! 

I 
b 

J ~  
-rib! b! 

I 
k(a,b) 

-~ k(a, b)t 

Disproofs of material propositions m are here denoted by -rim!. Each 
individual dialog about aAb runs from the initial argument aAb to a final 
argument of the tree, depending on the contingent sequence of proof 
results of the material propositions. A possible dialog about aAb is for 
instance 

aAb 
I 

a ~ a !  
I 

b ~ b !  

I 
k(a,b) 

k(a,b)! 

If the system is initially prepared in the state [tp), and the state after the 
measuring process with respect to a is [r the state after the measuring 
process with respect to b is lop") and the state after the measuring process 
with respect to k(a, b) is [r we have for the above dialog 

e~l~ ')  --- I~0'), &Ice")--  I~") ,  e~(o,~h0'") ~ IV")  

In this case, the proposition a Ab is true. In the remaining three cases of 
possible dialogs about aAb, the proposition is false. 
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Since the transition of a physical system, due to a material dialog, is 
characterized by the sequence of proofs and disproofs of the material 
propositions, we call such a sequence a possible material process. Each 
dialog is specified by a possible material process which is the contingent 
dynamical part of the dialog, and a structure of argumentation which is the 
linguistic and static part of the dialog. Let us assume now that, with 
respect to a physical system $,  there exists the set of all possible material 
dialogs and, thus, the set (P($))  of all possible material processes. Each 
proposition ~ about a system is associated with a set (P(~)) of possible 
material processes which is a subset of P($ ). By means of this semantical 
postulate with respect to the dialog game we arrive at the following 
definition. 

(1.16) Definition. (a) A proposition ~ is true in p e P ( i f , ) ~  the 
proponent wins the dialog about ~ under the condition that the sequence 
of proofs and disproofs of material propositions is p. 

(b) A proposition ~ is false in p E P(ffO ~'~ the proponent loses the 
dialog about ~ under the condition that the sequence of proofs and 
disproofs of material propositions is p. 

A valuation of the propositions of the formal language can now be 
obtained by the following. 

(1.17) Definition. A valuation over P($ ) is the function 

with 

and 

(a) 

(b) 

The function 

with 

v: M CP($)XS--->{T,F} 

M:= {(p, r ES,  p 

def. 
t~p((~) "~ ~((p,  ( ~ ) ) _ T  ~ (~ is true inp;  

vp(~)--F ~ (~ is false inp. 

vp : Ap C_ S---~{T, F)  

is called an admissible valuation on S. The set of admissible valuations on S 
(QVL) is the set {Vp: p E P ( S ) ) .  
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This establishes the formal language of quantum physics (QL) as a pair 
(QPS, QVL> where QPS is the Q-propositional syntactic system (1.8) and 
QVL is the set of admissible valuations of S. The concept of satisfaction 
can also be defined by means of our proof theoretic semantics. A proposi- 
tion ~ is said to be satisfied by vp if and only if vp(~)= T. d~ is said to be 
satisfiable if and only if there exists a p E P(S ) such that vp(d~)=T. (The 
concepts of refutation and refutability can be defined analogously.) How- 
ever, the concept of validity cannot be defined as usual (see 1A), since a 
proposition ~ does not belong to the domain of all admissible valuations. 
Therefore, we say that a proposition ~ is always true (or not refutable) if 
and only if vp(d~)=T for all p E P ( a )  (always false or not satisfiable 
analogously). 

Our considerations with respect to the language of quantum physics 
may be summarized by means of Diagram 3. 

Language of 
quantum physics 

[ Set of admissible I [ Univers--"-'~ 1 
valuations [ structure I Dialogic 

�9 semantics 
Quantum mechanical [Language] 
propositions ~ game 

Quantum theory 
of measurements 

Operational 
proofs 

"v  

Proof theoretic semantics 
Diagram 3 

Hilbert 
�9 space 
sonorities 

2. THE SYSTEM OF QUANTUM LOGIC 

We are now concerned with a foundation of quantum logic which is 
based on the established language of quantum physics. A logical system, 
the system of formal quantum logic, is presented, which is adequate to the 
language in the sense that a proposition d~ E S is formally true [see Def. 
(2.8) in Section 2.2] iff(~ is a theorem of the logical system. The proofs of 
the completeness and consistency of the logical system with respect to the 
language are given somewhere else because of their length and technical 
complexity. 

Before considering the formal logic, we introduce an algorithm which 
replaces the material dialog game as a proof procedure for propositions 
that are true in a given material process. 
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2.1. The Material I~gic 

A possible material process p E P($ ) consists in a particular sequence 
of proofs and disproofs of elementary and commensurability propositions. 
According to the definition of the sequential conjunction (A1), p estab- 
lishes the proof of an iterated sequential conjunction, denoted by I--]p, of 
the material propositions (proved) and the negations of the material 
propositions (disproved) in p. Hence, in our above example of a material 
dialog about a Ab ,  which is won by the proponent, the corresponding 
material process (a!,b!,k(a,b)!) immediately proves the proposition 
(a ['7 b)[-] k(a, b). On the other hand, the remaining three possible material 
processes <~a!>, (a!, --ab!), <a!,b!, --nk(a,b)!> with respect to a A b  im- 
mediately prove the propositions -7 a, a N  --1 b, (aRb)[7 -a k(a,b), respec- 
tively. In this way, any possible material process p can uniquely be 
associated with a sequential conjunction []p. 

As the auxiliary notion we define a possible dialogic process to be a 
sequence of proofs and disproofs of S propositions, denoted by d, which 
can be established in a dialog. The proofs of S propositions d~ within the 
sequence are denoted by d~ !, the disproofs by -1 d~ !. The set of all possible 
dialogic processes with respect to a physical system $ is designated by 
D($ ). We have P(S )C_ D($). Dialogic processes are used as short forms 
for several possible material processes within a game tree. They represent a 
system of branchings by simpler systems, e.g., the game tree for aAb:  

a A b  

I 
a 

J \  
-ha! a! 

b 
/ \  

"7 b! b! 

k (a, b) 
/ \  

-Tk(a,b)! k(a,b)! 
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can be represented by 

a A b  
/ \  

-~ (aAb)! (aAb)! 

a A b  

, o r  a ,... 
/ \  

-ha! a! 

b [-lk(a,b) 

n(b[-'lk(a,b))! (b[-lk(a,b))! 

A set of possible dialogic processes which establishes a short form of a 
game tree for the proposition C is denoted by D(d~), e.g., (<(aAb)!>, 
(-n(aAb)!)}.  The set of all D(C) which represent the same game tree can 
be constructed. 

For the following, two relations between P(S) and D($) are of 
importance. We assume that there exists a relation ----m C_ P($)X D(S), 
called material identiO~, such that for p ~ P(S ) and d C D($ ) 

(2.1)p=md, if and only if the proposition [-]d may be replaced by [-lP 
in any dialog about a proposition [--]d' (d 'E  D($)) in which [-']d occurs as 
a subproposition, without thereby influencing the possibility of winning the 
dialog about [-]d'. 

If there exists an elementary proposition c such that ( c ! ) = , , ( ( a A  
b)!), the above system of branchings may be replaced by the one branch- 
ing: 

r 

in any game tree. 
In addition we assume that there exists a relation =m C_P($)X D($), 

called material equali(y such that for p ~ P($) and d E D(S): 

(2.2)p =rod, if and only if the proposition n d  may be replaced by rip 
in any dialog in which R d is asserted, such that the possibilities of 
winning the subdialogs about [-]d and [-lP are the same. 
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If there exists an elementary proposition c such that <C!>=m<(a/~ 
b)!>, the above sequence of branchings may be replaced by the one 
branching only at the end of a game tree. 

Obviously we have ----m c_ = m" 
The class { p ' ~  P($):p'=--mp} is denoted by [P]m and the set of all 

such classes ([p]~: p E e ( $ ) )  is denoted by P=(S) .  In case a set D(~)  of 
possible dialogical processes which represent a game tree for ~ satisfies 
that for all d ~ D(d~) there exists ap  ~ P($ ) such thatp  =--rod, w e  define the 
set P = ( C ) : =  {[p]~ E P~_(~): p=--md, d~O(C)} .  

An admissible valuation on the set S of propositions can now also be 
specified by the function vtpl__: Atpl C_S--~(T,F ) with A[pI_=:=(CES: 
there exists a P=(C) with [p ]=~P=(C)} ,  and the set of admissible 
valuations can be specified by {v[pl=! [p]_ ~ P~_(S )). 

Analogously, these definitions can be transferred to the relation = m. 
In order to obtain propositions C that are true in a given material 

process p, we at first introduce the concept of dialog equivalence (or 
semantical equivalence), which defines an equivalence relation on the set of 
propositions. 

(2.3) Definition. Two propositions ~ and ~ are dialog equivalent with 
respect to the material dialog game D m (~ =--Dm~ ) if and only if (a) there 
exist e_(d~), e _ ( ~  ) for ~ and ~ such that e~_(~)= e = ( ~  ); (b) V[pl___(~ ) 
= V[pl___(~ ) for all [p]= E P=(d~). 

d~ ~ o ,  ~ means that in each dialog in which one of the two proposi- 
tions d~, ~ occurs it may be replaced by the other one without thereby 
influencing the possibilities of winning and losing the dialog. 

(2.4) Definition. Two propositions ~ and ~ are said to be value 
equivalent with respect to their truth values (~ = D ~ )  if and only if 
(a) there exist e= (~ ) ,  P = ( ~ )  for d~ and ~ such that P = ( ~ ) = P = ( ~ ) ;  
(b) V[pl_(d~ ) = Vtpl_(~ ) for all [p]= ~ e=(~) .  

d~ ---Din ~ means that in each dialog in which one of the two proposi- 
tions is asserted, it may be replaced by the other one, such that the 
possibilities of winning and losing the subdialogs about 6~ and ~ are the 
same. 

For instance we have a = D a [ 7 ( b l  I rob) since <a !>=m(a! ,  
(b L] -~ b)! >, but, in case b is not commensurable with all elementary 
propositions ESe, we have <a!>~m<a!,(bl I mb)!> and, therefore, a 
~D,a ['-1 (b [-'] -~ b). The proof procedure of the proposition a [-] (b i I  --1 b) 1--] c 
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is represented by the following game tree: 

a 
/ \  

-Ta! a! 
I 

b U -n b 

/ b \  
-Tb! b! 

/ '%, 
-~ c! . 

game tree for a 

game tree for a ['7 (b U -7 b) 

where a, b, c are tested by quantum mechanical measurements. The part of 
the game tree that corresponds to the proposition a l--](bll--rib) may be 
replaced by the game tree for a such that the possibilities of proving these 
propositions are the same. However, if, after the proof of a[--](bU -7 b) or 
the proof of a, a proposition c is tested that is not commensurable with b, 
the possibilities of proving c in general are different in the two cases. 

Although the relation of dialog equivalence depends on the possible 
material processes p E P(S),  we can specify some dialog equivalences 

------Din ~ purely by means of the formal connective structures of d~ and ~ .  
The dialog rules, together with (2.1), lead to the following. 

(2.5) Formal properties of the dialog equivalence: 
(a) --=D, is an equivalence relation c_ S x S 
(b) (~[~(6~ [~]~)~'D.(~['-]~)[7~ (associativity of r-I) 
(C) V[~ (~ -~Dm~ ~Om(~ r-IV 
(d) A ["] t~ --=D A ~D d~ [--]A 
(e) ~ U ~  - D .  7(-n d~['q --n ~ )  

(g) ~(-~ ~)=o.~ 
Oa) A A B ----o. (A rl  B ) [-7 k(A,  B)  =--o. commutations with respect to [7 
O) A V B  =-o,(A U B ) U  -7 k(A,B)=--o, commutations with respect 

to U 
O) A-->B ==-o Aq(BI'7k(A,B))==-o Aq(k (A ,B)F]B)  
(k) k (A ,B)=D k(B,A)=--D k ( T A , B )  
(1) if ~ - - D . ~  then ~-z) [ ~ / / ~ ]  (rule of substitution, i.e., if ~ occurs 

in the --=z). relation, it is replaced by ~)  
for all ~,  ~ ,  ~ ~ S and A, B ~ L. 



274 Sladmw 

Let us now consider the case that the proposition ~(~1--]@) is 
asserted in a dialog. By means of the argument rules, it can easily be seen 
that the subdialog about this proposition is won by the proponent if and 
only if either the subsequent subdialog about �9 is lost by the second 
participant, or the subdialog about ~ is won and the subsequent subdialog 
about @ is lost by the second participant. However, since -n(~[--]@ ) 
-------Din-7 ~ II-7 @ is obtained from (2.5), the first case is equivalent to the 
case where the proponent wins the dialog about --1 d~; the second case is 
equivalent to the case where the proponent wins the dialog about ~ and 
the dialog about --7 @ subsequently. 

According to (2.5), propositions that include subpropositions of the 
form - n ( ~ m @ )  are the only propositions that cannot be reduced to an 
equivalent conjunction [-]p. Using now, instead of propositions, variables 
for propositions, we arrive at the following. 

(2.6) The algorithm M of material quantum logic: 

(MI) [ p } = ~ m d  ifp ~ P($ )  andp ~md 
(M2.1) ~ ' [7  7 d~[7 ~ '  ~d~'['-] ~ (~ R ~)[-]  ~ '  
(M2.2) d~'[7 d~ R -7 ~ [7 ~ ' ~ ' N  -7 (d~ R ~)[-]  ~ '  

For simplicity we dispense with the parentheses due to (2.5) (b). The 
variables ~ '  and 63' include the case that no proposition is inserted. 

The algorithm M, together with (2.5), replaces the material dialog 
game as a proof procedure for compound quantum mechanical proposi- 
tions. The semantics for material propositions is now comprised in the 
"semantical" rule (M1), where the dialogic semantics for compound prop- 
ositions is formalized by the "formal" rules (M2.1), (M2.2) and by (2.5). 

We say that ['-]p entails ~ ([-]p~-M~) if and only if pEP(S) ,  there 
exists a d E D($)  such that p =-md, and C can be deduced from M by 
means of (2.5) and (2.6). The sets P(C) can be established by reducing 
and -7 C by means of the inverses of the rules of M, namely, 

(M'I) [-Td~[p]=_ i f p ~ P ( $ )  andp=-md 
(M'2) d~'[7 ~ (d~ [-] ~ )  N ~ ' ~ ' [ - 7  7 d~ [-] ~ ' , ,~ ' [7 d~ [7 ~ ~ F ] ~  ' 

to sets of classes [p]=. We have the following. 

(2.7) (a) VlvL=(~)=T if and only if [--]pt-Md~; 
(b) vfvl~(~ ) = F if and only if [-Lpt- M 7 ~.  

2.2. The Formal Logic 

After having established a propositional language of quantum physics 
and a first step of its formalization by means of the material logic, the 
program is now to proceed to a logical system that is adequate to the 
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language in the sense of Section 1.1. Since the classical concept of validity 
is altered in the framework of our semantics, the adequateness means here 
that the theorems of the logical system exactly are those propositions 
which are always true (see Section 1.3.3). This program is not executed in 
its fullness here. We restrict our considerations to that part of the program 
that dispenses with the semantics for material propositions to a certain 
extent. The reason for this is that the specific Hilbert space interpretation 
has only been used as an example of a proof procedure for material 
propositions that is performed outside of a dialog, but not as a necessary 
semantics. Thus it would be interesting to investigate a concept of truth 
that is widely independent of the underlying semantics for material prop- 
ositions and that appraises a logical system. 

This concept of truth is given by the concept of formal truth. 

(2.8) Definition. A proposition t~ is said to be formally true if and only 
if for all substitutions Se(~ ) of elementary subpropositions of d~ by elemen- 
tary propositions there exists a substitution S(Se(~)) of subprop- 
ositions of Se(~ ) by value equivalent elementary propositions such 
that S(Se(~)) is always true, i.e., V[p]_(S(Se(~)))=T for  all [p]= E 
P=(S(Se((~))). 

The formal truth of a proposition d~ does not involve the particular 
interpretation of its elementary propositions but only formal semantical 
properties, which apply to all elementary propositions of S e. However, in 
order to establish the formal truth of a proposition, also the semantics for 
commensurability propositions must be taken into account. We have to 
investigate whether a commensurability proposition k(A,B) is formally 
true in the sense that for all substitutions se(A),se(B ) of elementary 
subpropositions of A and B by elementary propositions there exist sub- 
stitutions s(s~(A)),s(s e (B)) of subpropositions of se(A ) and se(B) by value- 
equivalent elementary propositions such that k(s(s~(A)),s(se(B))) is always 
true. 

The formal truth of commensurability propositions and logically con- 
nected propositions has been investigated (Stachow, 1976). As a formal 
semantical property of elementary propositions, the idempotenee is 
assumed, i.e., it is assumed that for each elementary proposition there 
exists a proof procedure such that, if a proof has been established and the 
procedure is immediately repeated, the proof is reproduced. In addition, it 
is assumed that every logically connected proposition is value equivalent to 
an elementary proposition. For the sake of simplicity, the material dialog 
game, with the aid of the above assumptions and with the aid of an 
algorithm for formally true commensurability propositions (both are con- 
sistent with the Hilbert space semantics for material propositions), may be 
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replaced by a new dialog game, the formal dialog game, which is a proof 
procedure of the formal truth of logically connected propositions (see the 
above-cited article). By means of the formal dialog game the formal truth 
of a proposition A is established if and only if the proponent has a strategy 
of success within the formal dialog game about A, i.e., he wins the game 
irrespective of the arguments of the opponent. In previous articles 
(Stachow, 1976, 1978) logical calculi are investigated that are complete and 
sound with respect to the dialog-game semantics in the sense that all those 
and exactly those propositions can be established to be formally true in the 
formal dialog game that are theorems in the logical systems. Since the 
dialog-game semantics establishes the set of admissible valuations of 
the formal language of quantum physics, as is worked out in Section 1.3, 
we derive as an immediate consequence that the system of formal quantum 
logic is complete and sound with respect to the formal language (see Section 
1.1). These results are summarized by means of Diagram 4. 

Completeness a n d / / / /  
soundness / / / /  

Formal language 
of quantum physics 

System of formal 
quantum logic 

C o m p l e t e n e s s  and 
undness 

Dialog-game 
semantics 

Diagram 4 

The above diagram is restricted to the case of logical(y connected 
propositions due to the results in the previous articles. In the following we 
extend it to sequentially connected propositions. The extension of the 
formal dialog game to a proof procedure of the formal truth of sequentially 
connected propositions is straightforward but is not presented here. We 
proceed directly to the extended system of formal quantum logic which 
can be demonstrated to be semantically complete and sound with respect 
to the dialog-game semantics. The formal language of quantum physics is 
given already in Section 1.3. Thus we obtain the result that the system of 
formal quantum logic is complete and sound with respect to the formal 
language. 

2.2.1. The Calculus of Quantum Logic Q. In order to establish the 
system of formal quantum logic we first present the calculus of quantum 
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logic (see Stachow, 1978) which specifies the set of formally true logically 
connected propositions. As a second step the extension of this calculus is 
given in Section 2.2.2. 

The calculus can be written in a simple form if the two particular 
propositions A (the false proposition) and V (the true proposition) are used. 
The figures of the calculus are reduced to the form (A}kB, in the 
following written as A < B, where A and B are propositions. 

(2.9) Definition. The calculus of quantum logic (Q) is a triple (QPS', 
< ,RQ), where 

(a) QPS' is the Q-propositional syntactic system QPS(1.8), reduced to 
the set L of logical propositions; 

(b) < is a relation C LX L (A <B is called afigure); 
(c) RQ is a set consisting of the elements: 

(QI.1) ~ A  <A 
(Q1.2) 
(Q2.1) 
(Q2.2) 
(Q2.3) 
(Q3.1) 
(Q3.2) 
(Q3.3) 
(Q4.1) 
(Q4.2) 
(Q4.3) 
(Q4.4) 
(Q5.0) 
(Q5.1) 
(Q5.2) 
(05.3) 
(Q5.4) 
where 

A <B,,B < A ~ A  <~C 
~ A  A B  <.A 
~ A  A B  <B 
C <A,,C < B ~ C  <<.AAB 
~ A  <A V B  
~ B < A V B  
A <C,,B < C ~ A V B  <C 
~A/~(A---~B) <B 
A /~ C <<.B~A---~C <A--~B 
A <<.B---~A~B <~A-+B 
B <~A --~,B,, C <~A---~C~B * C <A ---~(B * C) 
~ A  < A ~ A  < V 
~ A A n A  <A 
A A B < A ~ A - - > B <  ~ A  
A < B - ~ A ~ - I A  <<.B---~-IA 
~ V  <~AV~A 

A, B, C stand for L propositions, and �9 E ( A, V, ~ }. 

If a figure A <B can be deduced (see Section 1.1) in Q, w e  write 

As a result of previous investigations (Stachow, 1978; Mittelstaedt and 
Stachow, !978) we have the following. 

(2.10) Theorem. 
(a) A logically connected proposition A is formally true if and only 

if FQV < A; 
(b) a commensurability proposition k(A,B)  is formally true if and 

only if F Q V < ~ ( A / ~ B ) V ( A / ~ - n B ) V ( ~ A / ~ B ) V ( - n A A ~ B ) .  
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(2.11) Definition. Two propositions (2 and @ are said to be formally 
equivalent (d~ = z~j@ ) if and only if for all substitutions Se(ff, ) and Se(6~ ) of 
elementary subpropositions of ~ and @ by elementary propositions there 
exist substitutions S(Se((2)) and s(se(@)) of subpropositions of Se(~ ) and 
se(@ ) by value equivalent elementary propositions such that S(Se(~)) and 
S(Se(~ )) are value equivalent. 

Without giving a proof here, we mention the following result: 

(2.12) Theorem. (a) A=z~B if and only if ~-QA <B and }-QB <A; (b) 
k(A,B)=I)j(AAB)V(AA-nB)V(--nAAB)V(-nAA-nB); (c) A V B  
=Dj-n(-nAA-nB), A---~B= Dj-nAV(A AB), --nA=DV for A,BEL. 

Because of (a) and (b) the calculus of quantum logic Q is a proof 
procedure for the formal equivalence of propositions also. 

2.2.2. The Calculus of Sequential Quantum Logic SQ. The proof 
procedures for the formal truth and the formal equivalence is now ex- 
tended to sequentially connected propositions. In order to establish the 
calculus of sequential quantum logic we take the following deductive 
scheme for formal equivalences as a departure which comprises the scheme 
(2.5) and the result (2.12). 

(2.13) (a) = DI is an equivalence relation c S x S 

Co) 6ei-I(r I-IC)--~,(~I-Ir 
(c) d~ FqV=z~ ~ =~V[--ld~ 
(d) ~ mA =O'A = o'Am 
(e) ~ u r  = ~ , = ( 4 e n ~ r  
(f) ~ - ~  =o,-q ~ LI~ 
(g) ~(-~ ~)=/~.~ 
(11) A A B  = o:(A [TB)[-]k(A,B) 
(i) A V B = ~ ( A  lIB)L] -~k(A,B) 
(j) A~B= D~q(BRk(A,B)) 
(k) k(A,B)= Di(AAB)V(A A-~B)V(-~A AB)V(-~A A-~B ) 
(1) if t-QA <B and t-QB <A then A = o,B 
(m)if R = D ~  then =D~[R/G~ ] (i.e., ~ i s  substituted for 

in = Ds ) 
where d~, ~ ,  ~ stand for S propositions and A, B stand for L propositions. 

This scheme is not yet complete in the sense that it establishes all 
formal equivalences between sequentially connected propositions. Only an 
extension of the rule (2.13) (1) which makes use of a calculus of sequential 
quantum logic completes the scheme. The following calculus incorporates 
the scheme (2.13) into its rules (SQ5). 
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(2.14) Definition. The calculus of sequential logic (SQ) is a triple 
(QPS, <,RSQ}, where 

(a) QPS is the Q-propositional syntactic system (1.8); 
09) < is a relation c S x S (called sequential implication, ~ < ~ is 

called a figure); 
(c) RSQ is a set consisting of the elements (Ql.1)-(Q5.4) and the 

additional elements: 
(SQ1) A < B ~ m A  <<.B 

(SQ2.1) 

~ n . - .  i--I~, I--I~ < - ~ ( ~  i-i~1-1. �9 �9 i--1~, i-i-~ c),, 

(SQ2.2) 

A,r-1.-. n ~, F-I-~ < ~(@ Fq@,l-l..- 1-1@, I-I ~ E),, 

r n ~(e~n ~(-.- n ~(~.n r nr162162 < 

~r n ~(~n -~(- .. n ~(~o n(en~)n%)n---)n ~#n r < c 

(SQ3.1) 

EF-I~,I-q... I--I~, l-q~ < ~ ( - ~  I--I~ r-1.-. I--I~,),, 

<r -~(~  n - ~ ( - . -  n ~(~. n~ n~.)n--.)n %)n~, 

=~e < r n -~  (,~ n ~ ( . . -  n -.-, (~. n ( ~  n r  �9 �9 ) n  r 1 6 2  

(SQ3.2) 

~ n ~ , n . . .  v16~ v 1 - ~  < -~(~ v l %  v1. . -FI~,) , ,  

~e < r n --,(,~ n ~(-.. n ~(~. n(~ nr162 )n~#nr 

(SQ4) 

(SQS.1) 

(SQS.2) 

(SQ5.3) 

(SQ5.4) 

(SQ5.S) 

< [~n(r ne)]~< [(,~n~4)ne] 

-<< [~. n A ] , ~  < [A ] ,~  < [ A n ~ ]  
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(SQ5.6) 

(SQ5.7) 

(SQ5.8) 

(SQ5.9) 

(SQ5.10) 

<[-~(~)]<~< [~] 

< [AAB]<=>< [(AFIB)FIk(A,B)] 
< [AVe]<=>< [(A UB)H-~ k(A,n] 

< [ A ~ ] ~ <  [~(~n~(A,~))] 

< [k(A,B)]~< [(AAB)V(AA-~B)V(~AAB)V(-~AA-~B)] 
(SQS.11) A <B,,~ <A,, < [A ] ~  < [8] 

<[(~] designates that a figure contains the proposition d~; the place in 
which ~ occurs is the same for both of the sides of a rule. ~,  03, C stand 
for S propositions; ~l . . . . .  d~,, 031 ....  ,03n (n e lN) stand for S propositions 
or no proposition; A,B stand for L propositions. 

If a figure ~ < ~ can be deduced in the calculus SQ we write 
~-SQ~ < 03. 

By means of the calculus SQ the system of formal quantum logic can 
now be establiShed: 

(2.15) Definition. The system of formal quantum logic (QLS) is a triple 
(QPS, < ,Th) ,  where 

(a) QPS is the Q-propositional syntactic system (1.8); 
(b) < is the sequential implication c_ S • S; 
(c) Th is the set of theorems ( ~  E S : bsQV < ~ }. 

The main result of our consideration of the formal quantum logic is 
formulated by the following theorem. The proof, which involves the details 
of the formal dialog game about  sequentially connected propositions, will 
be given elsewhere. 

(2.16) Theorem (Semantical completeness and soundness of QLS). 6~ 
Th if and only if the formal truth of 6~ can be established in the formal 
dialog game. 

Since the dialogic semantics establishes the formal language of quan- 
tum physics (QL), we have as a consequence of (2.16) the following. 

(2.17) Completeness and soundness of QLS with respect to QL. ~ ~ T h  
if and only if for all substitutions se(~ ) of elementary propositions of 6~ by 
elementary propositions there exists a substitution s(se(~)) of subproposi- 
tions of se(~ ) by value equivalent elementary propositions such that 
vlpl_(s(se(~))) = T  for all [p]= E P=(s(s~(~))). 
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We can now complete the deductive scheme for formal equivalences 
(2.13) in order to establish all formal equivalences between sequential 
propositions. The rule (2.13) (1) is replaced by the following rules for 
formal equivalences which are already incorporated in the rules (SQ2) and 
(SQ3) of the calculus: 

(2.13) (11) }-SQ(~I r~""" F](~n F-]~ • --3(-3 ~ m]6~n ['--] - . .  F]6~I) 

=o,e, n -~ (~n  -~(. �9 �9 n -~(e. n ( ~  n r  % ) n - . .  ) n r  r 

(12) ~sQS, F-1-'- FIS.R ~ < -~(~ he. l - -1 . . .  Fl~ 

Cn~(~n~(.--n ~(e.nr nr162 

Then one can show that two propositions d~ and ~ are formally equiv- 
alent if and only if ~ = z~@ is deducible within the scheme (2.13) extended 
to (11) and 02). 

The rule (2.13) (1): 

FQA <B and kQB ~<A ~ A =z) B with A,B  E L  

can be deduced within the extended scheme. Therefore the formal equiva- 
lences between logically connected propositions can be established by 
means of (2.13). On the other hand, the restriction of the rules (2.13) (11) 
and (12) to L-propositions: 

~QA -<<~ .-~ Cm ~(qn ~(--. n ~(e.n~ nr )nr162 

=hen ~(~n ~( n ~(e.n(~nB)nr162 

~-Q-~.,, < - ,B ..-. r n - ~ ( ~ n - ~ ( . . - n  ~ ( ~ . n s n r 1 6 2 1 6 2  

=~,,~,r- i-~(m~n. (. �9 �9 ml-~(~e, n ( A  n B ) n r  ) n r 1 6 2  

are deducible within (2.13). Moreover, these rules are equivalent to the rule 
(2.13) (1) within the scheme (2.13). The extension of the rule (2.13) (1) to 
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sequential propositions: 

~-SQ~<~ and [-SQ~ <6~ ~ d~=D~ w i t h 6 ~ , ~ C S  

is not valid, as can easily be seen by means of the following two counterex- 
amples for both of the directions: We have ~-so(A 11~3)[-qA < (A I 1C)['qA 
and ~-sQ(A [I ~)[~A ~< (A II ~ ) ['qA, but not (A II ~ )[--qA = D/(A U ~)[-']A. 
On the other hand, we have ~ - n ~  but not ~-SQ6~ < 6~ for 6g E S. 

The inverse of the rules (2.13~ (11) and (12) can be shown to be valid. 

2.2.3. Properties of Sequential Quantum Logic. For the following con- 
sideration of the algebraic representation of quantum logic, some further 
properties of quantum logic are important. 

(2.18) Some properties of SQ: 
(a) The inverse of the rule (SQ4) is valid, i.e., 

~-SQ~ • -'1 ~ t'--,A ~-SQ~ [~ (~ < A; 

(b) the rules, which are generated by the rules (SQ2) and (SQ3) by 
interchanging the second premise and the conclusion, are valid; 

(c) t-SQ6~<A ~ t -SQ~<~;  
(d) ~-SQ~ < G ~ ~-SQd~['q~ < G; 
(e) }-SQ~ [-'] ~ < ~ ~ t-SQ~ < ~ q C; 
(f) transitivity of the sequential implication: 

bSQ~<~ and FsQ~<E ~ bSQ~<~; 

(g) consistency of the sequential implication with respect to the 
formal equivalence: 

~ = z , ~  and FsQ<[C],--~ I - so<[~  ]. 

Remarks on the proofs: (a) can be proved by means of induction on 
the length of the deduction of the premise ~ < ~ 6~ by means of the rules 
(SQ): If G < ~d~ is the premise of the rule (SQ1), i.e., G,6~ EL, kSQG[-]~ 
< A follows by means of the rules (Q). If G '< --1 ~ '  is a predecessor of 
C <--1 ~ within the deduction of C <--1 ~, it follows by means of the 
inductive hypothesis G'[~d~'<A that E[-]d~ < A also is deducible. For 
instance if -~C--- ~(@-2[-]~("" R -n (Cn lT(~E]~3)m~n)P"  ")[-]~2), 
and the rule (SQ3.1) is applied, the predecessors are G[-q(~2R..- 
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o e ,  n @ <  7(7 nsnn . . -  n 7  
(~.  [-1 ~ [-] ~.)FO " �9 " )FI ~ ) .  The inductive hypothesis yields }-SQ~ [-I ~z 
[--] -~ ( ' ' "  F] 7 (~. 1--] ~ [-I ~ . )  F ] " "  ) [--1 ~ -<< A. Together with the first pre- 
decessor and by means of the rule (SQ2.1), ~-SQ~ F]@s[~ 7 ( . - -  F-] --7 (~.  [~ 
( ~ ]  ~ ) [ -}~ . ) [ - ]  �9 �9 �9 )[-] ~ < A follows. 

(b) We prove the rule: 

~-SQ(~[~ " �9 " ~ ( ~ n  [ ' ~  < --'~ (-"1 6ff3 [~Off3n U-] �9 �9 �9 m]6~l ~ " ~ )  

and 

n 7( n 7(-.. n 7(r n(r )n < 

The other rules can be proved analogously. By means of (a) and the rule 
(SQ4) it follows from the first premise that F-sQ(~ a F ] " "  [7 ~n [-] ~ V] 7 @ < 
- ~ ( @ , ~ . . - [ - ] ~ 1 [ - ] ~ C ) .  By means of (SQ5.2) and (SQ5.11) we have 
~-SQ~I F ] " "  F-] (~n F-] ~ F-] ----1 ~ ~ ---7 (--1 A[-7 6~ n [ ~ " "  n 6~1 F] ---1 ~ ) .  Together 
with the second premise and by means of the rules (SQ5.6) and (SQ2.1) 

R 7( V7 7(--. R V17(7  )V1 
[--]~l < C and by means of (SQ5.2) and (SQ5.3) finally F-SQ~l[-]--1 
( ~ z ~  7 ( . - "  [-1 7 ( ~ ,  V]~ V ] ~ , ) [ ~ " " "  ) N ~ 2 ) R ~ I  < C follows. 

(e), (d) can be proved by means of induction on the length of the 
deduction of the premises, analogously to the proof of (a). 

(e) From ~-SQ~[-]~ < G it follows by means of (a) that 
~-SQ (~ F] 633 m-] ---1 ~ -~< A, and by means of (SQ4) that ~-SQ~ • - ' 1 (~  [~ 7 ~ ) .  
By means of (SQ5.4) and (SQ5.5) we obtain ~-SQ6~ < ~ ~-C. Since the rules 
used in this proof are reversible it also follows from }-SQd~ < ~q  C that 

~-SQ~ Fq ~ < C. 
(f) From F-SQff3 < C it follows by means of (d) that F-so~ [--]~3 < E 

also. By means of (SQ2.1) we obtain from ~-SQ6~ < ~ and ~-SQ6~I-]ff3 < C 
the conclusion ~-SQd~ < C. 

(g) can be proved by means of induction on the length of the 
deduction of ~ = D ~  within the scheme (2.13). If d~=z)j ~ is one of 
the formal equivalences (2.13) Co)-(k), the conclusion is obtained by means 
of the corresponding rule of SQ. If 6~'=Ds~' is a predecessor of ~ - - D ~  
within the deduction of ~ =Dj~ ,  i.e., one of the rules (2.13) (a) and (m I is 
applied, it follows by-means of the inductive hypothesis and the rules of 
SQ that ~-SQ~<[ff3]. If one of the rules (2.13) (11) and (12) is applied, 
}-so ~< [~  ] is obtained by means of the premise of this rule. For instance, 
if ~ =~[ - ]7 (1~2[ - ]  7 ( - . .  [~ 7(6~nl-I(d).[--]~)ff]~,)f-q "" ")[-]~2)[-]~1,  
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= gl i--I 7 ( ~ m  7 ( .  �9 �9 [-] m(~n [-] ~ [ 7  6 3 , ) R  �9 �9 �9 )F-] 632)[7 631 a n d  
the rule (2.13) (11) is applied, we have k s Q ~ l [ ' q . . - [ - - ] ~ , [ 7 ~ <  

(-~ ~ [7 63, [7" ' "  [-] 631) as the premise. If 8 occurs on the right side of 
< in <[~] ,  the figure < [ ~ ] h a s  the form ~ < C l [ - ] m ( ~ f - ] - ~ ( . . .  [7-7 
( C m [ 7 8 1 7 C , , ) [ 7 " ' ) [ 7 ~ ) [ 7 C 1 .  By means of the rules (a), (c), (d) and 
(SQ4) it follows from the premise that ~- SQ C [-7 C l [-7"" [-1Gm N ~l [-1"'" 
[-7 (~n [7 (~ < -7 (-'1 6~ [7 63n r-I" "" [7 631 [7 ~rn [--] " " " [--] ~1)" Therefore we 
obtain from (SQ3.1) that kSQG < ~1 ['7 --n(~[7 9 ( - . .  ["] "n(~mV]63 [-]~,,) 
R ' "  ")[7~)[-7E1.  If ~ occurs on the left side of < in <[~] ,  the figure 
< I ~ ]  has the form~[7-n((~  -] 
~1 < ~. It follows from the premise that 

kSQC~ I-I" �9 �9 l--1~,,,I-3g~ I-3""" r-1 ~ r-i ~ 

Then it follows from (SQ2.1) that 

hQG, n-~ (e.,. n --1(..-[-1 -~ ( <  n 5 n %,)n.-- )n  %)n% -< ~. 

In order to establish further properties of the sequential quantum 
logic, it is useful to introduce a new operation (*) on S which inverts the 
sequence of the subpropositions of a sequential proposition. This operation 
is recursively given by the following definition. 

(2.19) Definition. The operation * is a mapping S-->S, 6 ~ * ,  where 
(a) a*=a for aESe; 
(b) (~ m~)*= ~ * F7~*;  
(c) (-~ ~)* = ~ *  

Obviously we have A* = A for A E L because of the commutativity of "I-1" 
within logically connected propositions. Since ( g * ) * = ~ ,  this operation 
reminds one of an involution. 

(2.20) Properties of sequential quantum logic: 
(a) [-SQI~ ~< 63 ~ kSQ-763*~< "-7(~*; 
(b) ~ = os63 ~ g*  = r,,.63 * 

Remarks. (a) can be considered as a generalization of the rule 

kQA<B ~ kQ'TB< 7 A  withA,B~L 

in sequential quantum logic. (b) determines that the relation of formal 
equivalence of two propositions is preserved if the sequence of the sub- 
propositions of the two propositions is inverted. 
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Remarks on the Proofs. (a) can be proved by means of induction on 
the length of the deduction of the premise ~ < ~ within the calculus SQ. 
If 6~ ~< ~ is the premise of the rule (SQ1), then 6~, ~ E L  and F-SQ-~ ~3 * < 
-76~* follows. If 6~' < ~ '  is a predecessor of ~ < @-3 within the deduction 
of d~ < 6-3, the inductive hypothesis consists in ~-so7 ~3 '* < 76~'*. Then 
one has to show that F-SQ-7~*<--n~* also. If 6~ < ~ has the form 
~ R A  < B  and the rule (SQ1) is applied, we have t-SQ-~B <-~A,  and by 
means of (2.18) (a) we have t- SQ-7 B O A  <<. A. From (2.18) (c) and (a) it 
follows that ~-SQ-1 B NA [-] ~* < A. By means of (SQ4) we obtain ~-so-1 B < 
7 ( A [ 7 ~ ) * .  If ~=~117--7(~2F]-7(''" m]-7((~n[-]((~F-]r 
"" . ) o ~ 2 ) r - ] ~ l  and the rule (SQ2.1) is applied, we have by means 
of the inductive hypothesis  ~-so-1 63 * F'] 6-31" r-] �9 �9 �9 0 ~ *  [-] -7 
~3.  < - 7 ( ~ * R  6~*[--] . . -  [-] 6~1") an d  ~-SQ-~@3* -<< -7(@-31" F- ] 
- 7 ( 6 3 2 * [ 7 - 7 ( . . . 1 7 7 ( ~ * [ - ] ~ * F ] ~ * ) F ] . - . ) [ - ] ~ 2 * ) [ 7 ~ I * .  By means of 
(SQ3.2) we obtain ~-SQ-7 63 * < -~ 6~*. The cases in which the rules (SQ2.2) 
to (SQ3.2) are applied are analogous. If 6~ < ~ has the form ~ < -1 ~ and 
the rule (SQ4) is applied, we have by means of the inductive hypothesis 
t-SQ-~A < - 7 ( ~ * O  ~*).  By means of (2.18) (a) it follows that 
t-sQmAF]~*[7~*.<<A, and by means of the rules (SQ4), (SQ5.2), and 
(SQ5.6) we have ~-SQ-7 ( ~  ~)* < -7 ~*. It can easily be seen that in the case 
that one of the rules (SQ5) is applied the conclusion ~-SQ -7 63 * -<< -7 6~* also 
follows from the inductive hypothesis. 

(b) can be proved by means of induction on the length of the 
deduction of the premise 6~=D• within the scheme (2.13). If ~ = o ~  is 
one of the formal equivalences (2.13) (b)-(k), the conclusion ~*--psi3 * is 
easily obtained. If ~ ' = o ~ '  is a predecessor of ~ - - - D ~  within the 
deduction of ~ =D~3, i.e., one of the rules (2.13) (a) and (m) is applied, we 
have 6~'*=Ds~'* by means of the inductive hypothesis. Then it can 
easily be shown that 6 ~ * = ~ *  also. If 6~=~r-] -7(d~ 21-1-7(.. .  
(eon@n .)n .-.)F]~3:)F7~I, ~ =~,n-~(~O-~('-" [-]-i 
(~,  O(6~[7 63)r-]@3,)[-]-.- )I7 @2)[-] 63, and the rule (2.13) (11) is applied, 
we have t -SQ~I[-] . . .F ' ]~nF-]~<-~(-7@F]@3n[--] - .L[-]~) .  B y  means 
of (a) it follows that ~-SQ6-31*O... F ] ~ * [ 7 - 7 ~ * ~ < - ~ ( ~ * I - ] ~ * F  7 
�9 "" [7 ~*)  also. Therefore we have by means of (2.13) (12) 

r  -~(r rq -~(. �9 �9 n -~(Sn* n ~ * F q ~ * ) n . . .  ) n ~ * ) F ]  ~,* = z,,~,* [q 
(... ( r  h e : )  n . . - )  n @ )  net ,  thus 

~* = D ~ * .  The case in which the rule (2.13) (12) is applied, is analogous. 

(2.21) Theorem. For A,B E L  and ~ ~ S :  
(a) (i) t - s Q A V ( ~ A A B ) < A ~ B ;  

(ii) ~-SQ@ <A F']B ~ ~-SQ~ < A V ( - n A A B ) ;  
(iii) ~-sQA l i B  <A V B ;  
(iv) ~-SQ A O B < ~ ~ ~-sQA V B  ~< ~. 
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Co) (i) ~s ,~AS<.4RB; 
(ii) ~-SQG <A ['-]B ~ ~-SQG <A AB;  

(iii) AsQA~B < ( A V - , B ) A B ;  
(iv) ~-SQA[']B<G ~ ~-sQ(AVmB)AB<G. 

(c) Let S m be the set of all propositions [Tn=lA; which are sequential 
conjunctions of logical propositions A; ~ L; let ': S m --~L be a mapping, 
recursively defined by (a) A' = A for A E L; (fl)  ([-'17= iAi) ' = (([7~.~Ai)'V 
mAn)AAn. 

(i)" ~-sQAi = 1Ai <~ n . n [ -T i=lA i  ' 

(ii) ~-SQ~ ~< [--]n=lA i ~ ~-SQ~ • A n = l A i ;  

(iii) F-SQ[77=lA i < ([Tn=lAi)'; 
(iv) ~-SQ[-qn=lAi<<-C ~ F-SQ([~7=IAi)'< E. 

(d) For any sequential proposition ~ ~ S there exist logical proposi- 
tions A,A E L such that 

(i) F-SQ~T< ~;  

(iii) ~-sQ~ <A; 
(iv) F-so~ < C ~ ~-sQA < C. 

Remark. Since (a), (b), (c) are useful subcases of the result (d), and (b) 
is a useful subcase of (c), they are formulated separately in the theorem 
and proved separately. 

Remarks on the Proofs. We make use of the following rules: 

(2.22) (a) ~-SQE <A and ~-SQE <B ~ ~-SQ~ <<.AAB; 
(b) ~-sQA < E and [-sQB ~< ~ ~ F-sQAVB~<C; 
(C) [-SQE[~A <~B ~ E <~A--*B. 

which can easily be proved to be admissible within SQ. 
(a) (i) we have F-sQ(AV(--nAAB))[-]--nA[-']-TB<<.A, since one can 

show that t-sQV < k ( A V ( ~ A A B ) , - n A  ), - n A A B = D , ( A V ( ~ A A B ) ) A  
A, ~-sQV < k( -n A A B, --1 B) and }-Q --1A A B A -1 B < A. (ii) From F-SQC < 

A UB it follows by means of the rules (SQ3.1) and (SQ3.2) that 
[-SQ~ m --hA < -nB and ~-SQG <A, or  F-SQ~ [~A <B and }-SQG <B. Because 
of (2.22) (c) and (a) we have F-SQG <A or ~-SQE <~(A--+B)AB, and by 
means of (2.12) (c) we have ~-SQG <A or ~-SQG ~< (--nAV(AAB))AB. Since 
~-QV < k(-~ A,A AB) ,  ~-QV < k(A AB,  B), one can demonstrate the distribu- 
tivity ( ~ A V ( A A B ) ) A B = o ( - n A A B ) V ( A A B ) .  Therefore, in both of 
the cases it follows that ~-SQC'< A V ( -1A A B) V(A A B) and, finally, ~-SQE 
<<.AV(-nAAB). (iii) Since ~-QA <<.AVB and t-QB<<.AVB, it follows by 
means of (SQ2.1) that F-sQAUB<AVB also. (iv) can be proved analo- 
gously to (ii). 

(b) follows from (a) by means of (2.20). 
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(c) (i) and (ii) can easily be proved by means of a generalization of 
the result (b) from a 2-place conjunction to an n-place conjunction. (iii) 
We show that, if SQ[--]iffil i<(~iffil  i)' t h e n  ~-SQ~iffilAi<((~n~.ll..4i)'~/ 
~A,,)AA,,. From Co) (iii) it follows that FSQ(RTfI'Ai)'~A,, < (([-']7211A,)'V 

A,,)AA,,. By means of the inductive hypothesis and (2.18) (e) we obtain 
" " - ~ A '  A ~-SQ[Ti= iAi < ((I-]g= 1 i) V-1 , ) A A ,  also. (iv) We show that, ff ~-SQ[-l~'s 

n--1 t n ~_ n t < E  .-~ ~-SQ([-]i=lAi) < C  is valid, then ~-so[Ti=lA~<G ~ so([-]~.lA,.) 
< C is valid. From F-SQ[-]~=IA i < C it follows by means of the inductive 

~_ n--I t hypothesis and (2.18) (e) that sq([7,.=lA~) [-']A, < C. From Co) (iv) we 
obtain ~-SQ([~n= IAi) ' < ~ .  

(d) Let us consider the figure C < 6~. If C < d~ is deducible within SQ, 
it follows from the rules (SQ3.1) and (SQ3.2) that there exists a complete 
set of predecessors of C < d~ which, after application of the rules (SQ4) and 
(2.18) (a), establish ~-SQE < m ( [ - ] n = t A i ) , t - s Q ~  < --q([-qim=lBi) . . . . .  From (c) 
we obtain by means of (2.20) ~-SQ~ ~< ~([-q]=,Ai)',~- s ~ < ~tr-l].,,Bi)', . . . .  
By means of (2.22) ( a ) i t  follows that ~-SQE < ~(~]~=,A;) / \~( [ - ] ] . , ,B~) '  
A ....  the conjunction denoted by C k. In this way one obtains the conjunc- 
tions C i for all possible deductions of figures E < ~ with ~ ~ S. Now we 
form _ the disjunction V { ~  of all ~ ,  and _ ob ta in  [-so L < (~ ~ ~-SQ~ < 
ViC~. On the other hand we have ~-sQVjC~ < 6~. This proves (i) and (ii), 
where the proposition ~T is given by Vi Ci. Let us now consider the figure 
6g < ~.  If ~-so6~< ~,  it follows from the rules (SQ2.1) and (SQ2.2) that 
there exists a complete set of predecessors of 6~ < ~ within a deduction of 
6~ < ~ which, after application of the rules (SQ4) and (2.18) (a), establish 
[-so[-]n. lAi<~,J-so[-]m=lBi<~,. . . .  T h e n  it follows from (c) that 
~'SQ(~in,,,iAi)'~ ~,[-SQ([-]im__lBi)'< ~ . . . . .  and by means of (2.22) ~ )  that 
~-SQ([-];% ~Ai)'V([-]i% ~Bi)'V"" < E- We denote the disjunction by Ck. The 
conjunction of all C; which can be obtained for all possible deductions of 
figures d~ ~< ~ satisfies [-SQ(~ ~-~ ~ ~ ~-SQAiCi < E ,  and ~-SQ~ < A i f i  . T h u s  
(iii) and (iv) are proved, where A is given by Ai Ci. 

By means of (2.21), a further important property of sequential quan- 
tum logic can be proved: 

(2.23) ~-SQd~ < ~ and 6~*=ojd~ z---a d~ =DA E L  

This property establishes a necessary and sufficient condition for a prop- 
osition to be formally equivalent to a logical proposition. 

Proof From F-SQ ~ < d~ it follows by means of (2.21) that there exists 
a logical proposition A ~ L such that ~-SQ(2 <.~ and F-so.4< d~. By means of 
(2.13) (11) we obtain ~ =D~ n X  and A = D X [ 7  ~.  It follows by means of 
(2.20) (19) and d~* = D d~ that A-= o(~ RA.  ~4nerefore we have ~ = z) S .  
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3. ALGEBRAIC REPRESENTATIONS OF QUANTUM LOGIC 

After having established the system of sequential quantum logic we 
now wish to represent this system and particular subsystems by means of 
algebraic structures. Our point of departure is the construction of the 
Lindenbaum-Tarski algebra of sequential quantum logic. 

3.1. The Lindenbaum-Tarski Algebra of Quantum Logic ASQ 

Analogously to the construction of the Lindenbaum-Tarski algebra of 
classical logic [see, e.g., Bell and Slomson (1974), p. 40], a Lindenbaum- 
Tarski algebra is also generated by quantum logic. 

(3.1) Definition. The Lindenbaum-Tarski algebra of quantum logic 
(ASQ) is the structure (Ee, EI,,Es; A, V,---~,k( , ), [7, 1t,4, 9,0,  1), where 

(a) E e is the set {{a}: aESe}; 
(b) EL is the set ([A ]: A E L} of equivalence classes [A] : = { B E L: 

(c) E s is the set {[d~]: d~ E S } of equivalence classes [~] := {~  E S: 

(d) A is the operation: EI.XEII-~EI. with [A]A[B]:=[AAB]; 
(e) A is the operation: EI.XEI,---~EI. with [A]V[B]:=[AVB]; 
(f) ~ is the operation: EL • Ez~EI ,  with [A]~[B] : = [ A ~ B ] ;  
(g) k ( ,  ) is the operation: El XEI.---~EI- with k([A],[B]):= 

[k(A,S)]; 
(h) [7 is the operation: EsXEs---)E s with [~ ] [ - ] [~ ] := [~ [ - ]~ ] ;  
(i) LA is the operation: E s X E s ~ E  s with [ ~ ] U [ ~ ] : - - [ ~ l  I~];  
(j) 4 is the operation: E s X E s ~ E  s with [~ ]q [~ ] : - - [~4~] ;  
(k) -n is the operation: E s ~ E  s with 7 [ ~ ] : - - [ - ~ ] ;  
(1) 0 is the equivalence class [A]:= { ~ @ S: ~ = DA}; 
(m) 1 is the equivalence class [V] : - -{~ES:  ~- -oV}.  

Remark. Because of the substitution rule (2.13) (m), the operations of 
the algebra do not depend on the representatives of the equivalence 
classes. For simplicity we use the same symbols for the operations in the 
algebra as for the logical and sequential connectives in the object language. 
The algebra is equipped with a comprehensive set of operations which are 
generated by the connectives and which are not independent. Since we can 
reduce the connectives to one 2-place logical connective, one 2-place 
sequential connective and the 1-place connective -7, and since V---os-n A, 
it is sufficient to consider the structure (Ee, EI,,Es; A, [7,--n,0> for in- 
stance. 
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Because of (2.18) (g), we can introduce a relation ( < ) which is defined 
by 

(3.2) < is a relation c_ E s x E s such that 

[9  .< < 9 .  

Since we have ~-SQ(~ C ~ ~.a (~ = D/(~ [--I 6j~, it follows that 

(3.3) 

Since in the following we only consider structures of the sets of 
equivalence classes, we simply use the same symbols for the equivalence 
classes as for their representatives. 

The algebra ASQ, which is defined in (3.1) by means of the relation of 
formal equivalence of S propositions, will now be formally characterized 
by the equations which hold between the elements of E s. Since the 
equations are generated by the formal equivalences of propositions, they 
are established by means of translating the scheme (2.13) in the following 
way: Propositions are replaced by the corresponding equivalence classes. 
The formal equivalences (2.13) (b)-(k) are replaced by the corresponding 
equations. (2.13) (a) and (m) are eliminated since they are fulfilled by 
equations. The rules (2.13) (11) and (12), which are reversible, are replaced 
by, the symmetric rules for the corresponding equations, where in the 
premise the sequential implication is replaced by the relation (3.2). Thus 
we have the following system for establishing the equations of the algebra 
ASQ: 

(3.4) (a) 
(b) 
(c) 
(d) 
(e) 
6) 
(g) 
(h) 
(i) 
d) 
(kl) 

(k2) 

~ [ q ( ~  [qC)=(~[q  ~)FqC 
~[qO=O=OFq d~ 
~ [-] 1 = (~ --- 1 r-] t~ 
d~l I~ = -~(-~ ~ F ] - ~ )  
~4~ = ~ U ~  
~ ( - ~ ) = ~  
A A B = ( A  r-]B )[--]k(A,B ) 
A V B = ( A I  IB)I I -Tk(A,B)  
A-->B= Ad(B[-]k(A,B))  
k(A,B )=(A A B )V(A A-~ B )V(-TA A B )V(-TA A-7 B) 
A,~ I-I " " FI  ~ .  FI  6~ < -~ ( -~ ~ M 9 . rq  . . . rq  9 , ) 

,--.~ ~, rq-~ ( ~  rq -~(. �9 �9 R -~(~. F]~ rq ~ . ) [ q . . -  )F1 ~2)FI 
~ =  ~l Fq-~(~2[q-~(--- [q ~(~.  [q(~ Fl~)r-] ~ . ) lq  �9 �9 �9 ) 
F192)F]~1 
~ m . . .  Fld~. I-1 - ~  < -~(9 [--19. F l . . .  FI91) 
~ rq ~ ( ~  rq -~( . . .m ~(~.  m9 m g . ) r q . . .  )r-] 92)rq 
91=81 [-1 -~ (~  I-1 -X.-- FI ~(~. FI(8 r-19)FI 9.)F1.. .  ) 
FI 9:,.)F191 
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where A, B stand for elements E EL, ff, i ~ ,  ~ stand for elements E Es, and 
691 . . . . .  Cn, ~ l  . . . . .  ~n  stand for elements ~ E s or no element. 

Obviously the rule (kl) includes the rule (3.3) as the case in which 
C~ . . . . .  6gn, ~ l  . . . . .  ~ stand for no element. 

In a second step we also wish to classify the relation < which is used 
in the rules (kl) and (k2), by means of a scheme. Since the sequential 
implication generates the relation <,  this scheme is obtained by means of 
the translation of the calculus SQ of sequential quantum logic. At first we 
consider the subcalculus Q of quantum logic. 

3.1.1. Representation of Q by Means of a Free Orthomodular Lattice. 
The beginnings of the calculus are replaced by the corresponding axioms 
of the system, i.e., " ~ "  is eliminated. The axiom that corresponds to the 
beginning (Q5.0) is eliminated since it can be obtained by means of (3.3) 
and (3.4) (c). The constitutive rules of the calculus are replaced by 
corresponding metalogical inferences, i.e., " ~ "  is replaced by 'L-~." Thus 
we arrive at the following system which classifies the relation ~< with 
respect to the elements ~ EL: 

(3.5) (al) A < a  
(a2) A < B a n d B < C  ~ A < C  
(bl) A A B  <A 
Co2) AAB,;B 
(b3) C < A  and C < B  ~ C < A A B  
(cl) A ~ A V B  
(c2) B <<.AVB 
(c3) A~<CandB<C ~ AVB<C 
(dl) AA(A-->B)<<B 
(d2) A A C < B  ~ A-->C <A-->B 
(d3) A <B-->A ~ B<A--->B 
(d4) B <A-->B and C <A-->C ,-~ B . C  < A - > ( B , C )  
(el) A A - n A  <0  
(e2) A A B < 0  ~ A--->B< -hA 
(e3) A <B--->A ~ -hA <B--->-nA 
(e4) 1 < A V ~ A  

w i t h A , B , C ~ E  L and * ~ { A , V , ~ ) .  

(3.6) Theorem. The structure (EL, < ) is a free orthocomplemented 
quasimodular ( orthomodular) lattice generated by the elements of E e. 

Proof. We show at first that -~ A is an orthocomplement, i.e., 
(3.7) (a) A A - T A < O  

(b) 1 <AV--nA 
(c) A < B ~ "n B < ~ A  
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(a) and (b) are already given by (3.5) (el) and (e4). In order to prove (c) we 
make use of (2.12) (c), from which we obtain A ---> B = --1 A V (.4 A B). From 
A <B it follows by means of (3.5) (al), (a2), (b3), and (c2) that A < - a B V  
(BAA),  hence A <B--->A. By means of (3.5) (d3) and (e3) we obtain 
- a B < A - - > ~ B  and, therefore, - a B < < . ~ A V ( A A - a B ) .  From A < B  it 
follows that A A -7 B < 0; therefore, --1B < --1A. 

The quasimodularity : 

(3.8) B < A  and C < - ~ A  ~ A A ( B V C ) < B  

can be obtained in the following way. From B <A it follows by means of 
(al), (a2), and (b3) that B < A A B ,  and by means of (c2) that B <  ~ A V ( A  
AB).  From C<  ~ A  it follows by means of (el) and (a2) that C <  ~ A V  
(AAB) .  By means of (c3) we obtain B V C <  - ~ A V ( A A B )  and therefore 
B V C < A --->B. From this it follows that A A(B V C) <A A(A-->B), and by 
means of (d. 1) that A A(B V C) < B. 

Because of (3.5) (al)-(c3) it follows that ( E  L, ~< ) is a lattice. On the 
other hand, the rules (3.5) (dl)-(d4) can be obtained from the rules (3.5) 
(al)-(c3) and (3.7) and (3.8). Therefore, the relation < in ( E  L, < ) does 
not contain more elements than those derivable from the postulates for a 
lattice (3,5) (al)-(c3), and (3.7), (3.8). This means that (EL, < ) is a free 
orthomodular lattice generated by the elements of E e. 

The equations between the elements of E L are now given by means of 
the system (3.5), (3.4) and the restriction of (3.4) (kl) to the elements of 
EL: 

(3.9) A <<.B ~ A = A A B  

which is obtained from A <B and B <A z--aA = B. 
With the aid of (3.9) we can also replace the system (3.5) by a system 

of equations and rules for equations, in order to classify the equations 
between the elements of E L . 

3.1.2. Representation of SQ by means of a Baer* Semigroup. Analo- 
gously to the translation of the calculus Q into the system (3.5), the 
calculus SQ is transformed into a system, which now establishes all 
elements of the relation < defined by (3.2). This system, which comprises 
the premises of the rules (3.4) (kl) and (k2), together with the system (3.4), 
classifies all equations between the elements of E s. However, we obtain a 
much simpler system for this purpose, if the system and the premises of 
(3.4) (kl) and (k2) are transformed into equations by means of 

(3.10) d~<~ z-~ d ~ [ ' - ] - ~ - - 0  
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which is obtained from the translation of (2.18) (a), (SQ4), and (3.4) (kl). 
Then one can easily show that the translations of the rules (SQ1)-(SQ5) 
are obtained from the scheme (3.4) where the premises of the rules (kl) 
and (k2) are transformed according to (3.10). We have 

A[-'] - n B = O  ~ C[--]AF]-nB=0 

by means of (3.4) (b); 

Cn..- ne.nen -nr n r 1 7 6  n~,n ~e--o 

and 

C n  ~ ( e ~ n - ~ ( . . - n  ---,(r n e  ne , , )n .  �9 . ) n r 1 6 2  n-~ e--o 

r n -n (e ~ n -n(. �9 �9 n ~(e, n ( e  n r 1 6 2  )n  r  5, n -~ 
6~=0 

by means of (3.4) (kl); analogously the translations of (SQ2.2) to (SQ3.2); 

r  ~ r  

by means of (3.5), i.e., -nO= 1, (3.4) (c) and (f); the rules that correspond to 
the rules (SQ5) are immediately obtained from (3.4) (kl) and (k2). 

Thus we have obtained the following result: The equations of the 
algebra of sequential quantum logic ASQ are given by the equations (3.4) 
(a)-(j), and the rules 

(3.4) (k) e,n.--neonen~r162176162 

e, n ~(r ~(... n ~(e. ne nr )nr162 

--e, n ~(~n-n(.--n ~ (~. n(~nr162162162 

(1) Cn-.. n~.n-n~ncnr162 

r n ~(~n -n (.-. n -n(e. nr nr )n r r 

--e, n-n(~n ~(... n ~(eo n(e n r r162162 

and the system (3.5), together with (3.9). 
The properties of sequential quantum logic (2.18)-(2.22) can im- 

mediately be transferred to the algebra ASQ. In particular we have 
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because of (2.19) the following: 

(3.11) There exists an automorphism *: Es~Es,  e ~ e * ,  such that for 
e , ~  E E  s and A ~EL:  

(a) A * = A ;  
co) ( e n r 1 6 2  
(c) (-~e)*= ~e*; 
(d) (e*)*--  d~. 

The set of elements that satisfy d~ = e n e = e *  is exactly the set E L. 
We can also use (3.11) as a postulate which, in connection with the 

system (3.4) (a)-(k), (3.5) a n d  (3.9), yields the equations of the ,algebra 
ASQ. The rule (3.4) (1) is then obtained by means of (3.11). From (3.4) (k) 
it follows that 

r162 ~e*netn.--nr 

r ~ ( g r n  ~(.-. n ~( r  n r  )na:*)n et  

=r n - ( r  ~(.-- n ~ ( r  n ( r  

If (3.11) is applied on this rule we obtain (3.4) (1). 
Because of (2.21) and by means of (3.10) we have the following: 

~3.12) There exist two mappings i-: Es--)Es, e ~ ,  and ": Es-,Es, 
e~-*~, such that for e ,  C E E s and e ,  e E EL: 

(a) ~[7~e=o;  
(b) ~ e = 0  ~ CV]-~=0; 
(c) e n ~ = 0 ;  
(d) ~Yl-~C=0 ~ ~ C = 0 .  

Now we can easily prove the following theorem. 

(3.13) Theorem. The algebra ASQ is a Baer * semigroup (Foulis, 1960) 
(E  s, ~ ,  *, '>, where 

(a) (Es, F7 ) is a semigroup, i.e., for ~ , ~ , G ~ E s :  
eV](~ OC)-- (e F]~)~C. 

Co) (Es, [7, *) is an involution semigroup, i.e., there exists a mapping 
�9 : Es--)E s, called an involution, such that for e ,  ~ EEs: 
(i) ( e W ] ~ ) * -  ~ * n e * ;  
(ii) ( e  *)* -- e .  

(c) (Es,[7,* > has aze ro  0, i.e., for e E E s :  
0 N e = 0 = e v ] 0 .  
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(d) There exists a mapping ': Es~P(Es):={@.~Es:  C = r g [ - ] C =  
* } (called the set of projections), C ~ 6~', such that for C ~ E s: 

{C eEs: CO8=0}={~ ~Es: 9 =9  lqS'}. 

The mapping ' is given by the product -o  7 .  By means of (3.12) (b) 
we have: C[-]~ =0, then C[-'] ~ ( ~ 6 ~ ) = 0 .  It follows by means of (3.4) (k) 
that C=C[- ] (~6~) .  On the other hand we obtain by means of (3.12) (a) 
that 9 m(~6~)m6~---o. Therefore it follows from 6-3 =6-3 [ - ' ] ( -~)  that 
~ F]~=0. 

It is a well-known result of the theory of Baer * semigroups (see 
Foulis, 1960) that, if (Es, n , * , ' )  is a Baer * semigroup, P'(Es):={~ 
P(Es): (~ ') '=6~} (called the set of closed projections), and the relation 

<<. c_ P'(Es) X e'(Es) is defined by ~ < ~ ~ 6~ = 6~ [-] ~ ,  then the struc- 
ture (P'(Es), ~< ) is an orthocomplemented quasimodular lattice. More- 
over, the infimum of 6~ and 9 (inf(~, 9 )) is equal to (6~ n 63 ' ) ' 0  6~, and 
the supremum of 6~ and 9 (sup(6~, ~ )) is equal to inf(6~', @ ')'. 

It follows for ASQ that P'(Es)= {rV: 6~ ~ Es)= P(Es)-= E L and, since 
the partial ordering coincides with (3.9), inf(6~, ff3)=d~A@, sup(6~, 9 ) =  
~ V g .  Therefore (e'(Es),  < ) and ( E  L, < ) coincide. 

The result of our investigation of the algebra ASQ can be summarized 
in the following way: ASQ is a structure which is a Baer * semigroup with 
respect to the operation [-], generated by the sequential conjunction of the 
logic. However, because of the additional operation -~, generated by the 
negation of sequential propositions, its structure is richer and can com- 
ple te lybe characterized with respect to the equations by the following: 

(3.14) ASQ is an algebra (E~, n ,  ~ , * , - ) ,  where 
(a) (Es, r-] ) is a semigroup with a zero 0, given by (3.4) (a) and (b), 

for 6~,9 ,C ~Es: 
(i) A[ - ] (~  r - ] c ) = ( d ~ n ~ ) l - l c ;  
(ii) g n o = o = o m s .  

0o) (Es, [--], -7 ) is given by (3.4) (k), i.e., for d~, ~ ,  ~l . . . . .  d~n, ~1, 
.... ~n E Es: 
(i) ~,n---[-q~nm~lq~%m~nl-q' '" l-q~, =0 

AqF' ] "m(l~2F]-7 ( . . .  [-I.m (~nr-]i~m]gn)[-]...)m'ld'~2)m]di'l'~ 1 
=r n n 
r  
(ii) -~ ( -~ 8 )  = 8 .  
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(c) * is an automorphism: Es~Es,  d~d~*,  given by (3.11), i.e., for 
~,~ ~Es: 
(i) (~ V]~)*= ~*V] ~*; 
(ii) ( 7 ~ ) * - -  7 ~ * ;  
(iii) (~*)* = ~. 

(d) -is a mapping: Es~P(Es) :=(~  EEs: ~=~[ - - ]~  = ~ * ) ,  ~ ,  
given by (3.12) (a), Co), i.e., for ~ ,C  E Es: 
(i) ~[-176g =0; 
(ii) CR-Td~=0  ~ E 1 7 7 ~ = 0 .  

Then one can also show that, if (E s, [-], -1, *,-) is given by (3.!4), and the 
def. _ 

relation < c_ P(Es) • P(Es) is defined by C < ~/'- 'xC = C Vq 4 ,  then 
the structure (P(Es), < > is an orthocomplemented quasimodular lattice 
with e(Es)=(~: ~ E s } ,  i n f ( C , ~ ) = C ~ ,  s u p ( C , ~ ) =  
--n inf(7 C, -7 �9 ). 

3.2. Connection between ASQ and Other "Algebras of 
Quantum Logic" 

Besides orthomodular lattices other algebraic structures have been 
considered within the framework of the axiomatic approach to quantum 
mechanical propositional systems. As generalizations of the Boolean alge- 
bra of classical logic, the theory of partial Boolean algebras (Kamber, 
1964), noncommutative and nonassociative generalizations of Boolean 
lattices [Zwerchverbiinde, Kr6ger (1973, 1974)], and an algebra, called 
algebra of quantum logic by Dishkant (1977), are of particular interest. In 
the following we briefly consider their connection with the algebra ASQ. 

(3.15) Definition. A partial Boolean algebra (PBA) is a structure 
(EL,K, N, tA, re,O, 1), where 

(a) E L is a set; 

(b) K is a relation C_ E L • EL, A ~ B  ~ (A, B) E K for A,B E EL, 
iT, U are 2-place operations: K--~EL; 
--1 is a 1-place operation: EL--~EL; 
0, 1 are 0-place operations E E L; 
with the axioms 

(i) K is reflexive and symmetric, 
A u A = A  for A EEL; 

(ii) 0 ~ A ,  
OtAA=AuO=A for A ~EL; 

(iii) I~A,  
1 A A = A  for A EEL; 
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(iv) A ~ B " ~ A  ~ -7 B, 
A N - 7 A - - O ,  A U ' T A = I  f o r A E E L ;  

(v) A ~ B ,  A ~ C ,  B ~ C . - ~  A ~ ( B  n C) and A ~ ( B  U C), 
A ~ B ,  A ~ C ,  B ~ C  

A n(B u C)=(A n B)u(A  n C) 
a n d A u ( B  n C)--(A u B ) n ( A  U C). 

Remark. If the 2-place operations are given on E L x EL, i.e., K =  E L x 
E L, (3.15) becomes a system of axioms for a Boolean algebra. 

A partial ordering < c_ E L x E L which is compatible (Kamber, 1964) 
with the partial structure of PBA can be introduced by 

def. 
(3.16) A < B w - . a A ~ B  and A =A f7 B. 

If PBA satisfies the additional postulate 

(3.17) A <B, B<.C ~ A ~ C  
one can show that the structure (EL, K, <~ > is a semi-Boolean algebra 
(Kamber, 1964) given by the following. 

(3.18) Definition. A semi-Boolean algebra (SBA) is a structure 
(EL,K,  <,  -7 >, where 

(a) E L i s a s e t ;  0 ,1EEL;  
(b) < is a partial ordering c_ E L • E L with 0 <A, A < 1 for A E EL; 
(c) 7 is an involution; E L ~ E L ,  A ~ - ~ A ,  7 ( ~ A ) = A  with 

(i) A <B ~ -TB <~ ~ A ;  
(ii) A < --1A ~ A = 0. 

(d) K is a relation c_ EL • EL, called commensurability relation, given 
by 
(i) 

0i) 
(iii) 
i.e., 

K is symmetric; 
< C K; 
If BA C E L is a Boolean algebra with respect to < in E L, 

( a )  A E B A  r-~ 7 A E B A ,  
(f l)  A, B E BA ,.-~ inf(A, B) exists with respect to < in E L 
and inf(A, B) E BA, 

then BA • BA C K; 
(iv) S E E L, S • S C K ,-~ there exists a Boolean algebra BA c_ 

E L with S c_ BA. 

Remark. The commensurability relation is unique. The quasimodular- 
ity (3.8) holds in SBA. 

It follows that, if A ~ B ,  then A n B = inf(A, B) =: A A B  and A U B -- 
sup(A, B)  =: A V B with respect to < in E L. 

If we demand the additional postulate: 

(3.19) For arbitrary A , B  E E  L there exists A A B  in EL, 
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the structure (EL,K, < ) becomes an orthocomplemented quasimodular 

lattice. The commensurability relation is given by A ~ B ~ 1 = (A A B)W 
(A A -7 B ) V ( ~  A A B ) V ( - 7  A A --1 B) =: k(A, B). 

On the other hand one can establish a PBA from an orthocomple- 
mented quasimodular lattice ( E  L, < ) in the following way: The relation 

def. 
A ~ B  z-.a I = k(A,B)  is a commensurability relation K C_Et. x E L. The op- 
erations tq, U : K--~EL are defined by A f7 B = A A B ,  A U B = A V B .  Then 
the structure (EL, K, N, U, -n,O, 1) is a PBA which satisfies (3.17). 

A connection between the algebra ASQ and noncommutative and 
nonassociative generalizations of Boolean lattices can also be established, 
since the generalized lattice operations are appraised by ASQ. 

An algebra, called geordneter Zwerchverband (Z), is given by the 
following. 

(3.20) Definition. Z is an algebra (EL, A ,  V ),  where 
(a) E L is a set; 
(b) A ,  V are operations: E L x EL--->EI~ , such that for A,B, C ~ E  L 

d) ( A A B ) A C = ( A A B ) A ( B A C )  
(ii) A A A = A 
(iii) A A ( B A A ) = B A A  
(iv) ( A V B ) V C = ( A V B ) V ( B V C )  
(v) A V A  =A 
(vi) A V ( B V A ) = B V A  
(vii) A A ( B V A ) = A  
(viii) A V ( B A A ) = A  

A partial ordering < c E L X E L is defined in Z by 
def. 

(3.21) A < B z--a A --- A A  B 

In this way the algebra Z can be considered to be a generalization of a 
lattice structure. 

The algebra (EL, A ,  x;/, --1,0, 1 ) is obtained from Z by means of the 
additional axioms: 

0.22) (a) 0, 1 e E L, 
(b) --1 is an operation: EL~EL, A~--~ ~A ,  such that for A,B, C 

EEL:  
(i) C A A  <B ~ C < B 2 /  -hA 
(ii) -~ A is an orthocomplement, i.e., 

0 = m l ,  A = A A 1 ,  A V - ~ A - - 1 ,  A A B = ' n ( - n A V  
7 B ) .  

This extension of Z can be considered to be a generalization of a Boolean 
lattice. 
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Within the framework of sequential quantum logic, the operations A 
and '9' of the algebra Z are appraised in the following way: Let (Ee, E L, 
Es; A, V,--->, k( , ), V-l, U,-4, -7,0,1 ) be the algebra ASQ of sequential 
quantum logic. Let -<< c_ E s x E s be the relation defined by (3.2). Because 
of (2.21) (b) we have the following. 

(3.23) A A B  <A [-]B <<. ( A T  -7 B ) A B  for A , B  E E  L such that A A B  is 
the greatest element of all elements ~ of E s with respect to < which 
satisfy ~ ~;A [TB, and ( A T  7 B ) A B  is the least element of all elements G 
of E s with respect to < which Satisfy A [7 B -<< ~. 

Let us define the operations A and V : EL X EL--->E L by A A  B :=(A 
V ~ B ) A B ,  A V B :  = -~(-aAA 7 B ) .  Then one can show by means of the 
results of Kr6ger (1973) that the algebra (EL, A ,  V ,  --1,0, 1 ) is an algebra 
Z which satisfies the axiom (3.22). The relation .<<, defined by (3.21), is the 
relation < in ASQ restricted to E L. For the element B V - T A ,  which 
occurs in the axiom (3.22) (b) (i), we have B k / 7 A  =A--->B. 

On the other hand, an algebra Z, which satisfies (3.22), induces an 
orthocomplemented quasimodular lattice in the following way: Let 
<EL, A ,  k;/, ~,0,  1) be an algebra Z and < the partial ordering in Z 
defined by (3.21). Then the  structure (EL, < ) is an orthocomplemented 
quasimodular lattice. The lattice operations are given by A A B  = ( A M  
-~ B)A  B, A V B =  -~ (-~A A-~ B). 

Another algebra, which represents a quantum mechanical proposi- 
tional system, is known from the literature. The algebra, called algebra of 
quantum logic (G), is given by the following definition. 

(3.24) Definition. G is an algebraic structure (EL, . ,  -7,0, 1 >, where 
(a) E L is a set, �9 is an operation E L X EL--->EL; 
(b) 0, 1 E E L such that for A @ El.: 

(i) A . 0 = 0 = 0 . A ;  
(ii) 1-- 70;  

(c) --1 is an operation EL-->EL, A ~ - 7  A, such that for A, B E EL: 
(i) -~A.A =0;  
O) B .A=O .-~ B - - B .  mA;  

(d) the following conditions are satisfied for A, B, C E E L: 
(i) ( A . B ) . C - - ( A . B ) . ( B . C ) ;  
(ii) A . ( B . C ) = ( A . C ) . ( B . C ) ;  
(iii) ( ~ ( A . B ) . B ) . A  =0; 
(iv) - -a ( "n (A 'B) 'B ) 'B=A.B;  
(v) A ' T B - - - - n A ' B , - ~  A = B .  

Again, we can introduce a partial ordering < c_ E L • E L in G, which is 
defined by 

< B def. A (3.25) A ~-.~. =A .B .  
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The algebra G is closely related to the algebra Z: Let ( E  L, ., -7,0, 1> 
be an algebra of quantum logic, and A ,  V be operations: EL X EL--~E L 
defined by A A B : = A . B ,  A V B : = - ~ ( T A A m B ) .  Then the structure 
(EL, A ,  V ,  7 ,0 ,  1 > is an algebra Z which satisfies the axiom (3.22). On 
the other hand, if ( E  L, A ,  V ,  --1,0, 1 > is an algebra Z and the operation ." 
E L x EL--~E L is defined by A.B = A A B, the structure <EL,., -7,0, 1 >. is an 
algebra of quantum logic. 

The proof of this can be established by means of the connec- 
tion between G and an orthomodular lattice structure. In the article by 
Dishkant (1977)it is shown that: If (EL, . ,  7 ,0 ,  1 > is an algebra G and < 
the partial ordering defined by (3.25), then the structure (EL, < } is an 
orthocomplemented quasimodular lattice, the lattice operations given by 
A / \ B = 7 ( ( - T A ) . B ) . B ,  A V B = 7 ( T A / \ T B ) .  On the other hand, if 
(EL,  < } is an orthomodular lattice and the operation �9 : E L x EL--~E L is 
defined by A-B = (A V 7 B ) A  B, then the structure ( E L , - ,  7,0,  1 > is an 
algebra of quantum logic. 

The connection between our algebra ASQ and the structures consid- 
ered above is summarized in Diagram 5. 

Algebra ASQ 
A / ~ B  <AI--]B < A . B  

Orthomodular A /~ B = -n ( -T A . 7 B ). B Algebra G 
lattice Algebra Z 

A A B  A . B  = 7 ( m A  A B ) A B  A . B  

Partial Boolean algebra 
A n B  

Diagram 5 

3.3. Realizations within the Hilbert Space Formalism 

It is well known that the lattice of the closed subspaces of a concrete 
Hilbert space ~ is an orthocomplemented quasimodular lattice [see 
Mittelstaedt (1978), p. 15]. Thus it is a realization of the lattice structure 
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(EL, < ) given by the axioms (3.5). Thereby the partial ordering < is the 
set-theoretic inclusion relation. For any two closed subspaces M A and M B 
there exists a greatest lower bound which is the intersection M A f'l M s, and 
there exists a least upper bound which is the closed span M A tO M s of the 
two subspaces. The orthogonal complement M A" of a closed subspace M A 
is an orthocomplement of M A. In order to establish the properties of the 
lattice, we pass to the algebraic structure of the projection operators which 
are in one-to-one correspondence with the closed subspaces of ~3C. The 
lattice ( E  L, < ) is then realized in the following way: 

(3.26) (a) EL~,-~-the set (L~) of projection operators P~e;.Ps . . . .  on ~ ;  

(b) < ~ < C L% • L~c such that PA <~ Ps ~ PA = Ps ~ PA 
where o denotes the operator multiplication; 

(c) A/~B.~PA/xB := (s)limn_,~(P A o Ps)n; 
(d) A k / B . ~ P A v  B := 1 - (s)lim~__,oo((1 - Pa) o (1 - Ps))"; 
(e) A---~B~--PA_,s := 1 - PA + (s)limn--,oo(PA ~ PB)n; 
(f) k(A,  B)~.~Pk(A,B) : = PAAB + PAA -~B + P-~AAB + P-~AA -~S; 
(g) ~ A ~ - I - P A ;  
(h) 0~,~zero operator 0; 
(i) 1 ~ unit operator 1. 

It can easily be verified that the relation < C L % •  is a partial 
ordering. The projection PAAS satisfies the axioms (3.5) (bl)-Co3), and the 
projection PAVB satisfies the axioms (3.5) (cl)-(c3).  PA--,S satisfies the 
axioms (3.5) (dl)-(d4).  The elements k (A ,B)  are realized by the projec- 
tions Pk(A,S)" If the elements 0 and 1 are realized by the zero and the unit 
operators on ~ ,  respectively, the projection P-,A satisfies the axioms (3.5) 
(el) to (e4). The projections PAAB, PaX/s' PA~B and P-,A are uniquely 
determined by the rules (3.5). 

In the particular case that the projections PA and PB commute, we 
have the following: 

(3.27) The following equations are equivalent: 

(a) leA, PB]- = 0; 
Co) Pk(A,B) = 1; 
(c) PAA~ = e~oeA; 
(d) eAv~=PA+PB--e~~ 

In Section 1.3.1 we already used the Hilbert space formalism as an 
example of establishing the concept of an elementary proposition. Thereby 
we assumed that elementary propositions are consistently represented by 
projection operators on a Hilbert space. Elementary propositions, which 
are considered to be atomic sentences of the object language, must be 
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conceptually distinguished from logically and sequentially connected prop- 
ositions which are linguistic constructs. When passing to the formal logic 
in Section 2.2, we stipulated in particular that for any logically connected 
proposition A there exists an elementary proposition a, such that A and a 
are value equivalent (i.e., A =Dma). Thus the formal logic of compound 
propositions provides the elementary propositions with a structure. The 
structure of elementary propositions established in this way is indeed 
consistent with the above example of a Hilbert space semantics of elemen- 
tary propositions, since this structure is realized by the algebra of projec- 
tion operators on a Hilbert space. 

A realization (Lg o < ) is isomorphic to the subalgebra ( E  L, < ) of the 
Lindenbaum-Tarski algebra ASQ, if and only if there exists a one-to-one 
mapping g from E L onto L~o such that for A, B ~ E L : A <~ BL"'ag(A) < g( B ). 
However, the algebra ( L ~  < ) of projection operators on a Hilbert space 

is not isomorphic to (EL, < ). There exist properties of (Lx, < ), 
namely, the infinite completion of the lattice operations, and the atomicity 
and covering property, which are not properties of ( E  L, < ). Within the 
framework of sequential quantum logic, these properties can only be 
founded by means of an extension of the logic. The infinite completion is 
obtained by using oe-place connectives in the language (Denecke, 1977); 
the atomicity and covering property can be established by means of 
additional conditions with respect to the language about a physical system. 
Under such an extension of quantum logic which leads to an extension of 
its algebraic representation, the existence of an isomorphism between the 
algebras (L~o < ) and the extension of (E  L, < ) can be shown. 

Sequentially connected propositions cannot be represented by projec- 
tion operators in general. However, we show in the following that the set S 
of sequential propositions can be represented by a more general operator 
algebra on a Hilbert space which is generated by the set of projection 
operators and the operations of operator-multiplication and addition. 

The system of sequential quantum logic is represented by the algebra 
ASQ(3.1), the abstract structure of which is given by (3.14). This structure 
is realized by the following operator algebra (AS) on a Hilbert space: 

(3.28) Definition. The algebra AS is a structure (L~oS~c; [-7, --n,*,-), 
where 

(a) 

Co) 

(c) 

L% is the set of projection operators on ~ .  
S% is the set of operators on 9C, recursively defined by 
O) ~ L x  ~ f f ,~S~d 
(ii) ~ , ~  ~S% ,-~ ~ o ~ ,  1 - ~ S % .  
N is an operation: S%• Sx---~Sx, such that for ~ , ~  ~S~o 
~ V ] ~  : - -~  ~ 
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(d) -7 is an operation: S~--->Sx, such that for ~ E S~, ~ ~ : -- 1 - ~.  
(e) * is the operator adjoint: S~-*Sx ,  ~ ~* 
(f) - is a mapping: Sx-->L~o which associates each operator ~ E S% 

with the projection operator ~: ~C--*G~La, where ~ a  :-- (l~p) E OC: 
It p) -- [q~) ) is the unit space of ~.  

(3.29) Theorem. The algebra (L~oS%; [-] ,-7,*,-)  is a realization of 
the abstract algebra (Es;  [7, 7 ,  * , - )  given by the axioms (3.14). 

Proof The structure ( S  o ['7 ) is a semigroup with a zero, namely, the 
zero operator O, since for ~,  ~ ,  C ~ S%: 

(i) Co(~ o ~ ) = ( C o ~ ) o ~ ;  
(ii) 0o ~ = 0-- ~ o 0. 

The operation -7, given by (3.28) (d), satisfies (3.14) (b). (i) If for 
~ . . . . .  ~ . , ~ , ~ , ~  . . . . .  6s E S~c: ~ . . . . .  ~ o(1-6s . . . . .  ~ = 0 ,  
then ~1 . . . . .  ~ o ~ o ~  . . . . .  ~1-=_~1 . . . . .  ~ o6~o~o~. . . . . .  ~ ,  and 
therefore ~1o(1 - ~2o(1 . . . . .  (1 - ~ .oCoC~)  . . . .  )oC-2)oC 1 = ~x o(1 - 
~2o(1 . . . . .  (1 - ~ # o ~  oCoC.) . . . .  ) . . . .  )oC2)o(~ ~. Obviously the reverse 
conclusion is also valid. (ii) ( 1 - ( 1 - C ) ) = C .  The operator adjoint * 
satisfies the axiom (3.14) (c), since 

(i) ( ~  o ~ ) *  = ~ * o ~  *; 
(ii) (1-d~)*= 1-(~*;  

(iii) d~** = d~. 
We have P( S ~  : = ( ~ ~ S%: (~ = ~ o 6~ = (~ * ) = L%. The mapping -, defined 
by (3.28) (f), satisfies the axiom (3.14) (d). We have 

(i) ( 1 -  d~)o~--O, 
(ii) ( 1 - ~ _ ) o e = 0  ~ (1- (~)o8  =0,  

since ~ = ~ o ~ ,  and ~ - - ~ o ~  ~ ~ = ~ o ~ .  The projection operator ~ is 
uniquely determined by (i) and (ii). 

The operations U and -t can be defined in ( E s , ~ , - , , * , - )  by 
~ l ~  : = - ~ ( - ~ V ] - ~ ) ,  ~ q ~  :-- ~ U ~ .  It follows that they are re- 
alized in AS such that: 

(3.30) (a) f f [ _ l ~ + @ - @ ~  
(b) ~-16~.~1- ~ + ~ o~. 

With P a , P n ~ L x = P ( S ~ ( ~ :  ~ S % ) ,  and with the relation r  
defined by (3.26) (b), we have 

the 

inf(PA,Pn) -- P~o (1 - (1 - Pn) o Pn) -- PnAn, 

sup(PA, PB) -- 1 -- inf(1 -- Pa, 1 -- Pn) = PAys" 

If the algebra (L~,  ~< ) of projection operators on ~)C is isomorphic to 
extension of the substructure (EL, ~< ) of the Lindenbaum-Tarski 
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algebra ASQ, then the algebra AS is isomorphic to the algebra ASQ. There 
exists a one-to-one correspondence between the operators in S% and the 
equivalence classes of formally equivalen t propositions in E s. The struc- 
ture of the operations in the algebra corresponds to the connective struc- 
ture of compound propositions. In this way a logical foundation of AS is 
established. 

The set S o defined by (3.28) (b), is a proper subset of the set (C%) of 
all continuous linear operators on ~ .  It is exactly the subset which, in the 
framework of sequential quantum logic, possesses a logical foundation. 
Whereas, e.g., the operator PA +PB--PB ~ ~ S ~  corresponds to the 
sequential disjunction A l iB ,  the operator PA + JOB ~ C~o ~ S% for PA 4= 
P~B ~ PA, does not correspond to any proposition composed of the sub- 
propositions A and B. 

The algebra (AC) of all continuous linear operators on ~ is also a 
realization of the abstract algebra (E  s, F], 7,  *,-). If the operations are 
defined according to (3.28) (c)-(f), where S% is replaced by C~o and L% is 
replaced by P(C~ := (~  ~ C%: ~ = ~ o ~ = ~* }, then the proof of theo- 
rem (3.29) can be taken over. 

We have P(C~c) = (~:  C E C%} = L~o and with the relation <, defined 
by (3.26) (b), we have for PA,PB EP(C~: 

inf( P~,PB)= PA ~ ( 1 - ( 1 - P B ) ~  

sup(PA, PB) = I --inf(1 -- PA, 1 -- PB) = PAVB" 
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